
Musa Al-hassy January 12, 2021

Clojure Reference Sheet
Everything is a list!
� Functions are first-class values; variables and functions share the same namespace

—“Clojure is a Lisp-1 Language”.
� To find out more about name execute (doc name)!

For these notes, I followed the delightful Clojure for the Brave and True; I suggest start-
ing with ClojureScript Koans: An interactive question-answer approach where you type
up (super small) code to progress ;-)

Primitive Data Structures

Use def to bind a name to a value —this’ like CommonLisp’s setq.

Clojure’s data structures are all immutable; that cannot be changed in place.
Numbers Integers, floats, ratios: (printf "%s and %s and %s" -93 1.2 1/5)
Symbols Atomic literals, 'hello. They’re like numbers: They are what they are! Unlike

strings, the idea is to treat these literally rather than operate on their ‘contents’.
They’re first-class names!

Closely related, are keywords, such as :hello. In Clojure, these are not symbols
since they always evaluate to themselves and cannot act as names.

It’s a semantic difference: With eval, the symbol 'hello will have whatever value
the name hello has; whereas :hello yields :hello as its value.

Strings Enclosed in double-quotes; use str to catenate a bunch of lists.
Maps/Hashes/Dictionaries/property-lists These structures allow you to associate

keys/words/properties with values/definitions. Extremely versatile!
� The empty map is {};
� The map sending keyi to valuei is {:key0 value0 ... :keyn valuen}.

(def m {:name {:first "Bob" :last "Abe"} :age 10 :act +})
(m :age) ;; ⇒ 10
(:last (:name m)) ;; ⇒ "Abe"
(apply (get m :act) [1 2]) ;; ⇒ 3

;; Keys can be anything
({3 40} 3) ;; ⇒ 40

� If m is a map, use (:key m) to get the value associated with :key.
� Since maps are essentially functions, you can use function application syntax:

(m key).
� Trying to get the value associated to a key not in a map will yield nil.

Three equivalent ways to get the value of k in map m if it is in m, otherwise
return default value d —which is optional and defaults to nil.

(get m :k d), (m :k d), (:k m d)

In particular, observe that keywords :k act as functions that lookup a key
in a map —symbols also act as look-up functions.

� Starting from the empty map, one can ‘conjoin’ new values: (conj {k v} m)
is the new map that at key k yields v and at all other keys behaves like m.

� Alternatively, use (hash-map :key0 value0 ... :keyn valuen) to make a
map and (get m key) to get the value associated with key key.

Vectors (Append friendly!) These are like maps but numbers are used to access the
values. E.g., (get [x0 x1 ... xn] i) = xi for i : 0..n.
� Vectors can also be created with (vector x0 x1 ... xn).
� Use conj to ‘conjoin’ a new element to the end of a vector:

(conj xn+1 [x0 ... xn]) = [x0 ... xn xn+1].
Lists (Prepend friendly!) These are like vectors but conj adds elements to the start of

a list.
� get doesn’t work with lists; use (nth '(x0 ... xn) i) = xi.
� Lists can also be created with (list x0 x1 ... xn).

For lists, conj is also known as cons since it constructs lists by adding elements at
the start. The operation to add elements at the end is known as snoc, the reverse
reading of cons; as such, Clojure has both (cons) lists and snoc lists (vectors) as
primitive data structures.

Sets Collections of unique values, #{x0 ... xn} —duplication is ignored in that

(conj xs x) is just xs if x is already a member of set x.
� Sets can also be created with (hash-set x0 x1 ... xn).
� (contains? xs x) indicates whether x is an element of set xs.
� Sets are essentially maps where the values are just themselves:

#{x0 ... xn} = {x0 x0 ... xn xn}; so you can use any of the three above
ways to get values.

Unlike many other Lisps, in Clojure maps, vectors, lists, and sets can (optionally) have
their arguments separated by commas! E.g., (= '(1 2 3) '(1, 2, 3) '(1 2, 3)) is
true.

Sequence & Collection Methods

All of Clojure’s data structures —strings, vectors, maps, lists, and sets— take part in
both the sequence abstraction and the collection abstraction.

The sequence abstraction focuses on the elements, whereas the collection abstraction
focuses on the structure as a whole.

The Collection Abstraction
� count ⇒ How many elements does the collection have?
� empty? ⇒ Does it have any elements?
� every? ⇒ Does every element in the collection satisfy a given predicate?
� into ⇒ Insert all the elements from the second collection into the first.

◦ E.g., (into #{} xs) converts xs into a set, whereas (into {:a 1} xs) con-
verts a list xs of key-value vector pairs into a map but :a will map to
whatever it maps to in xs, if any, or 1 otherwise.

This is like concat but it does a collection conversion: The result is the same
collection type as the first argument.

� (conj xs x) ⇒ Insert x into the collection xs.
◦ For vectors, insert at the end.
◦ For lists, insert at the beginning.

1

https://www.braveclojure.com/foreword/
https://gist.github.com/yogthos/be323be0361c589570a6da4ccc85f58f
http://clojurescriptkoans.com/

◦ For sets, insert if it’s not already in xs.
◦ For maps, x has the shape {:key value}, and we update the value of :key

in xs to now be associated with value.

This is like cons but it preserves the collection type —whereas cons forces it to
be a list: (cons x xs) = (cons x (seq xs)) where (seq xs) = (into '() xs)
is discussed below.

(conj xs x) = (into {} (cons x xs)) for xs a map.

conj and into are essentially the same function, except one takes a varadic number
of arguments whereas the other takes a formal sequence for the second argument:

(conj xs y0 y1 ... yn) = (into xs (list y0 y1 ... yn))

In summary, every collection can be formed from the empty collection —
'(), [], {}, #{} — and using into to shove new elements into it —alternatively, con-
joining new elements with conj. Interestingly, (into '() xs) reverses a list xs but does
nothing to a vector xs —since conj prepends for lists and appends for vectors.

The Sequence Abstraction

Sequences implement first, rest, cons and so may use the sequence operations
map, reduce, filter, distinct, group-by,

Using first and rest we can always obtain a list from any sequence
type; the method to do so is called seq and it’s characterised by:
(seq xs) = (cons (first xs) (seq (rest xs))). For instance, for maps,
(seq {key0 val0 ... keyn valn}) = '([key0 val0] ... [keyn valn]). Moreover,
whenever a sequence is expected, seq is called —e.g., when map is called. This is why map
always returns a list; e.g., (map #(* 3 (second %)) {:a 1 :b 3 :c 5}) = '(3 9 15).
Use into —discussed above— to convert to a different sequence type.

Below are a few examples shown using lists, but they work with the other data-structures
too, such as hashmaps!
� (range start end) = (list start (+ start 1) (+ start 2) ... (dec end)).

start may be omitted, defaulting to 0.
� (concat '(x0 ... xk) '(xk xk+1 ... xn)) = '(x0 ... xn).
� (some p xs) = (p xk) where xk is the first element to satisfy predicate p; or nil

otherwise. (Linear Search)

(some #(and (p %) %) xs) = xk is how to get the actual element that satisfies
the predicate p, if any.

� map zips its lists arguments together along a given “zipping function” f.

(nth (map f xs0 xs1 ... xsn) i)
= (f (nth xs0 i) (nth xs1 i) ... (nth xsn i))

For f being vector, the map takes some lists (“rows”) and produces a list of lists
(“columns”) —think “matrix transpose” or “tupling”.

Recall that :key act as functions extracting the values associated with key :key;
whence, (map :key ms) projects the value of :key from each map in ms.

� reduce replaces every (implicit) cons/conj with a new binary operation.

(reduce ⊕ e '(x0 x1 ... xn)) = (⊕ (⊕ (⊕ (⊕ e x0) x1) ...) xn)

The initial value e is optional and may be omitted.
� take k '(x0 x1 ... xn)) = '(x0 x1 ... xk−1)

� drop k '(x0 x1 ... xn)) = '(xk xk+1 ... xn)

� take-while p '(x0 x1 ... xn)) = '(x0 x1 ... xk−1) where xk is the first el-
ement to not satisfy the predicate p.

� drop-while p '(x0 x1 ... xn)) = '(xk xk+1 ... xn) where xk is the first el-
ement to not satisfy the predicate p.

� Extensionality: xs = (concat (take-while p xs) (drop-while p xs))
� (filter p xs) is the largest subsequence of xs whose elements all satisfy pred-

icate p; unlike take-while, it process all of xs rather than stopping at the first
value that falsifies the predicate p.

� sort sorts a list in ascending order.
� (sort-by f xs) sorts the elements of xs according to the order ‘<’ defined by x

< y ≡ f x < f y. E.g., (sort-by count xss) sorts the sequence of sequences
xss according to their length.

There is also list comprehensions (for [x xs] body) = (map (fn [x] body) xs); more
generally, these are “nested for-loops”:

(for [x0 xs0 ... xn xsn :let lc :when wc] body)
= (map (fn [[x0 x1 ... xn]] (let lc body))

(filter (fn [[x0 x1 ... xn]] (let lc (when wc [x0 ... xn])))
(cartesian-product xs0 xs1 ... xsn)))

Where a supposed cartesian-product function essentially behaves as
(for [x0 xs0 ... xn xsn] [x0 ... xn]) —i.e., it returns all vectors vs where
(nth vs i) is an element of xsi.

Laziness: “I thunk, therefore I’m done!”

The map (and filter) function is lazy : The ith-element of (map f xs) is computed
only when it is actually needed. E.g., (first (map f xs)) is (f (first xs)) and so
the rest of the map is not evaluated at all.

Likewise, (def result (map f xs)) is evaluated nearly instantaneously regardless of
how big xs may be: The map is computed as elements of result are accessed. If you
try to access or “think” of (nth result i) then if it is already computed —i.e., we have
already “thunk” it— then we return that value, otherwise, we compute it and return it.

More accurately, Clojure chunks its computations: When an element is requested, it will
compute a few elements after it as well since you’re likely to request them as well. From
below, it can be seen that it computes the next 30 elements.

(def result (map #(do (Thread/sleep 100) (* 2 %)) (range 0 100)))
(time (nth result 1)) ;; ⇒ 2; Elapsed time: 3270.204959 msecs
(time (nth result 30)) ;; ⇒ 60; Elapsed time: 0.051002 msecs (Neato!)
(time (nth result 33)) ;; ⇒ 66; Elapsed time: 3293.824322 msecs

Accessing the first element takes ~3200 milliseconds since Clojure prepared the next ~30
elements in case we want to access them next; e.g., in the next line we access the 30th
element almost instantaneously. After that, we try to access an element not yet computed
and it and the next ~30 after it are computed.

Note:

2

� (Thread/sleep 1000) ⇒ Sleep/pause for 1second
� (time e) ⇒ Evaluate e and return its value along with a print to standard

output indicating how long it took to evaluate e.

(+ 2 (time (+ 1 2))) ;; ⇒ 5 (Elapsed time: 0.022374 msecs)

Warning: Unused = Unevaluated!

;; Since the map's result in unused, it is not evaluated!
(do (map print (range 0 100)) (println "bye")) ;; Prints' “bye” only
;; Use “mapv” which is eager!
(do (mapv print (range 0 100)) (println "bye")) ;; Prints' “01...100bye” only

Infinite sequences: (repeat x) is the infinite sequence that returns x at every index:
(nth (repeat x) i) = x for any i ≥ 0.

Evaluating (repeat x) will take forever since it’s an infinite list; instead use
(take n (repeat x)) to get a finite list of length n.

Likewise, (repeatedly f) generates an infinite sequence from the nullary function f.

(take 3 (repeatedly (fn [] (rand-int 10)))) ;; ⇒ '(5 9 6)
(take 2 (repeat "n")) ;; ⇒ '("n" "n")

You can also use lazy-seq to treat a sequence lazily.

(defn evens
([] (evens 0))
([n] (cons (* 2 n) (lazy-seq (evens (inc n))))))

(take 3 (evens)) ;; ⇒ '(0 2 4)

You can memoize a function f so that if you’ve already ‘thunk’ it at input a then anytime
(f a) you get the value immediately!

(defn slow [x] (Thread/sleep 1000) x)
(def fast (memoize slow))
(time (fast 1)) ;; ⇒ “Think it!” Elapsed time: 1000.529943 msecs
(time (fast 1)) ;; ⇒ “Already thunk it!” Elapsed time: 0.068761 msecs

Conditionals

Booleans: true and false
� (Deep structural) equality: (= x y).
� nil indicates no value.

◦ (Warning! Unlike other Lisps, nil 6= false and nil 6= ’()!)
� Use nil? to check if a value is nil.
� Comparisons: As expected; e.g., (<= x y) denotes x ≤ y.

Regarding Boolean operations —such as and, or, if— both nil and false denote logi-
cally false values; everything else denotes logical truth: (boolean x) returns true exactly
when x is truthy —i.e., it converts things to Booleans.
� or, and returns the first truthy / fasley value if any, or the last value otherwise.
� if takes at-most 3 arguments: (if condition thenExpr optionalElseExpr)

◦ If you want to perform multiple expressions, use do —this is progn in
CommonLisp.

◦ Note: (if x y) = (if x y nil);
better: (when c thenBlock) = (if c (do thenBlock)).

◦ (if xs ...) means “if xs is non-fasley then . . . ” is akin to C style idioms
on linked lists. E.g., (if 9 2 4) = 2.

Avoid nested if-then-else clauses by using a
cond statement –a (lazy) generalisation of
switch statements: It sequentially evaluates
the expressions testi and performs only
the action of the first true test; yielding
nil when no tests are true. Below we use
the keyword :else to simulate a ‘default
case’—indeed, any non-falsey value would
have sufficed.

(cond
test0 expr0
test1 expr1
...

:else defaultExpr)) ;; optional

Replacing cond by case x results in an exhaustive case-analysis: If x is the literal ex-
pression testi then yield expri, if no match happens, crash —to use a default, just have
a default value as the final expression, no need to precede it by anything. A hybrid of
cond and case is condp.

Block of Code do and control flow and, or

Use the do function to treat multiple expressions as a single expression. E.g.,

(do (println "hello")
(def x (if (< 2 3) 'two-less-than-3))
(println (format "%s" x))
23) ;; Return value of the “do” block

This’ like curly-braces in C or Java. The difference is that the last expression is considered
the ‘return value’ of the block.
� Lazy conjunction and disjunction —and, or— can be thought of as control flow

first and Boolean operations second:

(and s0 ... sn e) ⇒ when all xi are non-falsey, do e
(or s0 ... sn e) ⇒ when no xi is falsey, do e

� That is, and is the maybe monad : Perform multiple statements but stop when any
of them fails, returns falsey.

� Likewise, or performs multiple statements until one of them succeeds, returns
non-falsey:

� We can coerce a statement si to returning non-falsey as so: (do si true). Like-
wise, coerce falsey by (do si nil).

Functions

. Functions are (unexceptional) data:
;; Add numbers
(+ 1 2 3) ;; ⇒ 6

;; Apply a function to each number
(map inc [2 4 6]) ;; ⇒ (3 5 7)

Function invocation: (f x0 x1 ... xn). E.g., (+ 3 4) or (print "hello").

3

� Clojure is strict : In a function call, all arguments are evaluated before the func-
tion is executed. Besides function calls, there are special forms which are ‘special’
since they don’t always evaluate all of their operands; e.g., if, when, and macros
such as def. There are also ‘lazy collection’ types.

� Only prefix invocations means we can use -,+,* in names since (f+*- a b) is
parsed as applying function f+*- to arguments a and b.

� Function definition:

(defn my-function
"This functions performs task ..." ;; documentation, optional
[arg0 arg1 & more] ;; header, signature
(str arg0 arg1 (nth more 3))) ;; body, instructions
◦ The return value of the function is the result of the last expression exe-

cuted.
◦ The documentation string may indicate the return type, among other things.

(doc my-function) ;; ⇒ See signature and docstring
◦ In function definition, use & to make a function take any extra number of

arguments; it must come at the end and it is treated as a list in the function
body. This is known as a rest parameter.

(my-function "x" "y" "a" "b" "c" "d") ;; ⇒ "xyd"

Functions also support arity overloading, which act as a way to support default argu-
ments.

(defn doit
([x y z]

(+ x y z))
([x y]

;; default value for z
(doit x y 666))

([x]
;; Completely different behaviour
;; when y,z omitted
(* 7 x)))

(doit 1 2 3) ;; ⇒ 6
(doit 1 2) ;; ⇒ 669
(doit 1) ;; ⇒ 7

Instead of dispatching/choosing function definitional clauses according to arity, some
language also allow dispatch according to argument type; Clojure goes further by dis-
patching along the result of an arbitrary function of the arguments. These functions are
called multimethods; they are defined by defmulti which takes their name and the dis-
patch function, then each overloaded method is defined independently using defmethod
which takes the multimethod name, the dispatch value, and the function body.

;; “doit” is an overloaded method, dispatched along
;; the “:kind” value of the 1st arg, being a hashmap,
;; AND along the length of the second argument, being a sequence.
;; That is, the dispatch value is a vector of length 2.
(defmulti doit (fn [x y] [(:kind x) (count y)]))

;; Here are three boring implementations, along the dispatch value
(defmethod doit [:fruit 5] [x y] :one)
(defmethod doit [:fruit 4] [x y] :two)
(defmethod doit [:veggie 4] [x y] :three)

;; Optional default method when nothing matches
(defmethod doit :default [x y] x)

;; Example calls
(doit {:kind :fruit :age 10} "hola!") ;; ⇒ :one
(doit {:kind :veggie :age 10} "hola!") ;; ⇒ the 1st arg

;; ⇒ Without the default method, this crashes!

Multimethods are another way to define ordinary functions, and so can be used wherever
a function is used. Such functions could be defined using condp to dispatch along the
appropriate implementation; but this is more difficult to maintain as more alternatives
are added, whereas the defmethod approach is a nice separation of concerns —also known
as open-closed principle.

You can also destructure parameters —lists and maps are discussed below.

(defn doit2
[[x y &zs] ;; The first argument is a list/vector consisting

;; of at least 2 values, say x and y, then
;; followed by the list/vector zs

{w :w} ;; The second argument is a map;
] ;; Let w denote the value of key :w in the map.

(+ y (or w 1))) ;; In-case :w is not in the map, use 1 as default.

(doit2 [1 2 3 4] {:v 5 :w 6}) ;; ⇒ 7
;; (doit2 [1] {:v 5 :w 6}) ;; ⇒ Error: First argument too short!

Anonymous functions: (fn [arg0 ... argk] bodyHere); as usual, you can also de-
structure arguments and have rest parameters.

;; make then later invoke
(def my-f (fn [x y] (+ x y)))
(my-f 1 2) ;; ⇒ 3

;; make and immediately invoke
((fn [x y] (+ x y)) 1 2) ;; ⇒ 3

;; Super terse notation
(map #(* % 2) [1 2 3]) ;; ⇒ [2 4 6]
The anonymous function #(...%i...) is a
function where %i refers to the i-th argu-
ment; % is equivalent to %1 and %& refers to
the rest parameter.

Keyword/named arguments = rest parameters + (hash)maps + destructuring.

(defn f [a & {:keys [b c d] :or {c 7 d 11}}] (list a b c d))

Huh? f has a required argument, a, followed by a rest parameter (&), that we destructure
into a hashmap {...}, whose :keys contain at least b, c, d —:or, if the key c is not
there then use 7 as default, and likewise use 11 as default for d.

;; (f) ⇒ Error, “a” is a required positional argument!
(f 2) ;; ⇒ '(2 nil 7 11)
(f 2 :d 4) ;; ⇒ '(2 nil 7 4)
(f 2 :c 5 :b 3 :d 7) ;; ⇒ '(2 3 5 7)
(f 2 :ignored 99 :whatever "ok") ;; ⇒ '(2 nil 7 11)

Higher order functions
� apply unpacks a sequence so it can be passed to a function that expects a rest

parameter. For any k ≥ 0,

4

https://stackoverflow.com/questions/62057461/what-are-the-benefits-of-using-multimethods-instead-of-cond-in-clojure

(apply f x0 x1 ... xk−1 '(xk xk+1 ... xn)) = (f x0 x1 ... xn)

� If f is a function of n arguments, then (partial f x0 x1 ... xk−1) is the func-
tion f with it’s first k arguments already given and the remaining n - k elements
not yet given.

(partial f x0 x1 ... xk−1) = #(apply f x0 x1 ... xk−1 %&)

� (complement p) = #(not (apply p %&))

� (identity x) = x

� (comp f1 f2 ... fn) = #(f1 (f2 (... (apply fn %&)))); if n = 0, this is just
identity.

Let and Loop

Clojure’s data structures are immutable —one cannot change them in-place— with
structural sharing and it has no assignment operator —one cannot associate a new value
with a name without creating a new scope, say via let.

Let forms allow local names and allow destructuring as functions do.

(let [x 2
[_ y] '(0 1 2 3)] ;; y is 1

(+ x y)) ;; ⇒ 3

;; Let's add the first 10 numbers
(loop [i 0

sum 0]
(if (< i 10)
;; “update variables and continue”
(recur (inc i) (+ sum i))
;; “break, returning this value”

sum))
;; ⇒ 45

Loops are an in-place form of recursion:
(loop [i start] ...(recur i’)...) =
(f start) where f is (fn [i] ...(f
i’)...). The loop, like the underlying
anonymous function, can take any number
of arguments/initial-bindings.

Quotes, Quasi-Quotes, and Unquotes

Quotes: ’x refers to the name rather than the value of x.
� This is superficially similar to pointers: Given int *x = ..., x is the name (ad-

dress) whereas *x is the value.
� The quote simply forbids evaluation; it means take it literally as you see it rather

than looking up the definition and evaluating.
� Note: ’x = (quote x).

Akin to English, quoting a word refers to the word and not what it denotes.

This lets us treat code as data! E.g., ’(+ 1 2) evaluates to (+ 1 2), a function call, not
the value 3! In general, (eval (quote e)) = e for any expressions e; e.g., ’(+ 1 2) is
data that when evaluated/executed/run yields 3: (eval ’(+ 1 2)) ⇒ 3.

An English sentence is a list of words; if we want to make a sentence where some of
the words are parameters, then we use a quasi-quote –it’s like a quote, but allows us to
evaluate data if we prefix it with a tilde “ ~ ”. It’s usually the case that the quasi-quoted
sentence happens to be a function call! In which case, we use eval which executes code
that is in data form; i.e., is quoted.

(Macros are essentially functions that return sentences, lists, which may happen to con-
tain code.)

;; Quotes / sentences / data
'(I am a sentence)
'(+ 1 (+ 1 1))

;; Executing data as code ;; ⇒ 3
(eval '(+ 1 (+ 1 1)))
(def name "Jasim")

;; Quasi-quotes: Sentences with a
;; computation, code, in them.
`(Hello ~name and welcome)

;; ⇒ '(Hello "Jasim" and welcome)
`(+ 1 ~(+ 1 1)) ;; ⇒ '(+ 1 2)

As the final example shows, Lisp treats data and code interchangeably. A language that
uses the same structure to store data and code is called ‘homoiconic’.

Macros

. . . when I have time. . . !

5

https://hypirion.com/musings/understanding-persistent-vector-pt-1

