
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

An Elementary Semantics for PackageFormer with

Applications to Universal Algebra (Short Paper)

—Draft—

Musa Al-hassy, Jacques Carette, Wolfram Kahl

Abstract

Folklore has held that any ‘semantic unit’ is essentially a type-
theoretic context —this includes, for example, records and
algebraic datatypes. Recently a flexible implementation of
general contexts has risen in the setting of Martin-Lof Type
Theory as so-called PackageFormer. These contexts come
equipped with a number of so-called variationals that allow
them to be viewed as concrete Agda packaging constructs
—such as records, algebraic datatypes, and modules.

PackageFormers are implemented as an editor extension
for Agda, but their theoretical boundaries are unclear. In this
paper, we provide a simple semantics to the useful editor
extension. Moreover, to demonstrate that the semantics is
sufficient to capture a large number of use cases, we show
how homomorphism constructions can be mechanically de-
rived using the PackageFormer mechanism in a correct-by-
construction fashion for over 300 equational theories —we
are serving more than just a classical mathematical audience
by considering tiny theories near the theory of Groups. This
is the second contribution of this paper: Ensuring that a com-
mon pattern can be mechanically derived for a large number
of use cases that people generally have written by hand.

MA:
• Group =Carrier× Identity×Operation×Unit-
Laws × AssocitivityLaw × InvOp × InvLaws
• 2 ⇐ There are two choices to whether we
want a carrier or the empty theory.
• 2 ⇐ There are two choices to whether we
want an elected element or not.
– 22 ⇐ If we have the element, there are
4 choices whether we want left/right unit
laws.

• 2 ⇐ There are two choices to whether we
want a binary operation or not.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• - 2 ⇐ If we have an bop, there are two choices
to whether we want the AssocitivityLaw.
• 2 ⇐ Two choices whether we have a unary
operator or not.
– 22 ⇐ If we have an InvOp, there are 4
choices whether we want left/right inverse
laws.

Total: 2 × 2 × (1 + 1 × 22) × (1 + 1 × 2) × (1 + 1
× 22) = 300
• Maybe we can jump to categories instead and obtain
functors!
• Right now, I’ve tried M-sets; but simply have not tried
if the existing setups works for cats —something to do.
– If it doesn’t work, discuss why not.

ACM Reference Format:

Musa Al-hassy, Jacques Carette, Wolfram Kahl. 2019. An Elemen-
tary Semantics for PackageFormer with Applications to Univer-
sal Algebra (Short Paper)—Draft—. In Proceedings of ACM

Conference (Conference’17). ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction [0/4] boring:unclear

□ Show example of a PackageFormer.
– Demonstrate how: PackageFormer ≈ named context
+ header.

□ Show example of how it can be used to give a record.
□ Show how it can be used to give us a homomorphism

definition.
□ What are the pre- and post-conditions of the homo-

morphism construction?
– This is what we are trying to solve.

2 A Grammar for PackageFormer [0/5]

rather:promising

□ Grammar for PackageFormer heading.
□ Grammar for element datatype.
□ Grammar for “types”.

– We clearly cannot use any Agda/MLTT types.
□ Define a fold for PackageFormer —the homepage cur-

rently calls this graph-map due to the graph theoretic
nature of element dependencies.

□ Prove that this fold preserves well-formedness & well-
typedness of PackageFormers.
– This is the semantics function!

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Musa Al-hassy, Jacques Carette, Wolfram Kahl

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

– PackageFormers are anM-Set and fold is anM-

Set homomorphism!

Call this M-Set “PF”.
1. Two sorts: PackageFormer and Element.
2. Action: _�_ : PackageFormer → Element →

PackageFormer
3. Monoid on PackageFormer
∗ Unit: The empty PackageFormer
∗ Bop: Union of contexts
· If they agree on their intersection, then union
of element lists; otherwise ‘crash’ by yielding
ANN.
· ANN is the annihilating PackageFormer: It
is a postulated value that acts as the zero of
union.
· This ensures that a crash propagates and so a
union of PF’s is ANN if any two items conflict.
· E.g., “crash : PackageFormer⊥→ PackageFormer⊥
→ Boolean” is defined with “crash ⊥ x ≈ true”
and symmetrically so.
· Taking ANN = ⊥, as a bottom element; e.g.,
nothing.
· Proof outline of associativity:
· Case 1: No crashes, then ordinary list catena-
tion, which is associative.
· Case 2: Some two items conflict, then ANN is
propagated and both sides equal ANN.

2.1 Deriving Fold

1. Define a “Right M-Set” (close, but not really):
PackageFormer M-Set : Set1 where

Carrier1 : Set
Carrier2 : Set
� : Carrier1 → Carrier2 → Carrier1
∅ : Carrier1
∪ : Carrier1 → Carrier1 → Carrier1
leftId : {v : Carrier2} → ∅ �v ≡ v
assoc : {a b : Carrier1} {v : Carrier2} → (a ∪ b) �v ≡ a ∪ (b �v)

2. LetM denote an M-Set.
3. For fold : PF −→ M to be anM-Set homomorphism,

we are forced to have . . .
4. Two maps, foldi : PF.Carrieri → M.Carrieri
5. fold1 is a monoid homomorphism
a. Unit1: fold1 ∅ ≈ ∅
b. Assoc1: fold1 (p ∪ q) ≈ fold1 p ∪ fold1 q

6. Equivariance: fold1 (p � e) ≈ fold1 p � fold2
e

7. Since a PackageFormer, by extensionality, can always
be expressed as a finite sequence of extensions we find:
fold1 p

= {- Extensionality, with ei elements of p -}
fold1 (∅ � e1 � e2 � · · · � en)

= {- Equivariance (6) -}
fold1 ∅ � fold2 e1 � · · · � fold2 en

= {- Unit (5.1) -}
∅ � fold2 e1 � · · · � fold2 en

= {- M-Set.leftId -}
fold2 e1 � · · · � fold2 en

8. Whence it seems fold1 is defined uniquely in terms
of fold2 —which is unsurprising: PackageFormers

are an inductive type!

9. TODO: Realise this argument within Agda!

3 An Application to Universal Algebra

super_sketchy

□ Grammar for the minimal language necessary to form
homomorphism contexts.
– How? What? Huh!?
– I’m not sure I know what I’m thinking here.
– I’m trying to “know” what the hom variational, from
the webpage does!

□ Define a function: H : PFSyntax → List HomoSyntax.
□ Show a coherence such as H(T � e) = H T � H e

where � denotes context extension; i.e., append.
– This would ensure that we have a ‘modular’ way to
define homomorphisms.

Applications to structures that CS people are interested
in?
• Monoids ⇐ for-loops
• Graphs ⇐ databases
• Lattices ⇐ optimisation

4 Conclusion & Next Steps sketchy

• Initial semantics is enough?
• Limitations?
• Dependent-type?
• A counterexample not covered by the semantics?
• Soundness?

2

	Abstract
	1 Introduction [0/4]boring:unclear
	2 A Grammar for PackageFormer [0/5]rather:promising
	2.1 Deriving Fold

	3 An Application to Universal Algebrasuper_sketchy
	4 Conclusion & Next Stepssketchy

