An Elementary Semantics for PackageFormer with Applications to Universal Algebra (Short Paper)

-Draft-
Musa Al-hassy, Jacques Carette, Wolfram Kahl

Abstract

Folklore has held that any 'semantic unit' is essentially a typetheoretic context -this includes, for example, records and algebraic datatypes. Recently a flexible implementation of general contexts has risen in the setting of Martin-Lof Type Theory as so-called PackageFormer. These contexts come equipped with a number of so-called variationals that allow them to be viewed as concrete Agda packaging constructs -such as records, algebraic datatypes, and modules.

PackageFormers are implemented as an editor extension for Agda, but their theoretical boundaries are unclear. In this paper, we provide a simple semantics to the useful editor extension. Moreover, to demonstrate that the semantics is sufficient to capture a large number of use cases, we show how homomorphism constructions can be mechanically derived using the PackageFormer mechanism in a correct-byconstruction fashion for over 300 equational theories -we are serving more than just a classical mathematical audience by considering tiny theories near the theory of Groups. This is the second contribution of this paper: Ensuring that a common pattern can be mechanically derived for a large number of use cases that people generally have written by hand.

MA:

- Group $=$ Carrier \times Identity \times Operation \times UnitLaws \times AssocitivityLaw \times InvOp \times InvLaws
- $2 \Leftarrow$ There are two choices to whether we want a carrier or the empty theory.
- $2 \Leftarrow$ There are two choices to whether we want an elected element or not.
$-2^{2} \Leftarrow$ If we have the element, there are 4 choices whether we want left/right unit laws.
- $2 \Leftarrow$ There are two choices to whether we want a binary operation or not.

[^0]- $-2 \Leftarrow$ If we have an bop, there are two choices to whether we want the AssocitivityLaw.
- $2 \Leftarrow$ Two choices whether we have a unary operator or not.
$-2^{2} \Leftarrow$ If we have an InvOp, there are 4 choices whether we want left/right inverse laws.
Total: $2 \times 2 \times\left(1+1 \times 2^{2}\right) \times(1+1 \times 2) \times(1+1$ $\times 2^{2}$) $=300$
- Maybe we can jump to categories instead and obtain functors!
- Right now, I've tried M-sets; but simply have not tried if the existing setups works for cats -something to do. - If it doesn't work, discuss why not.

ACM Reference Format:

Musa Al-hassy, Jacques Carette, Wolfram Kahl. 2019. An Elementary Semantics for PackageFormer with Applications to Universal Algebra (Short Paper) —Draft—. In Proceedings of ACM

Conference (Conference’17). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction [0/4]
 BORING:UNCLEAR

\square Show example of a PackageFormer.

- Demonstrate how: PackageFormer \approx named context + header.Show example of how it can be used to give a record.Show how it can be used to give us a homomorphism definition.
\square What are the pre- and post-conditions of the homomorphism construction?
- This is what we are trying to solve.

2 A Grammar for PackageFormer [0/5] RATHER:PROMISING

\square Grammar for PackageFormer heading. Grammar for element datatype.
Grammar for "types".

- We clearly cannot use any Agda/MLTT types.

Define a fold for PackageFormer -the homepage currently calls this graph-map due to the graph theoretic nature of element dependencies.
Prove that this fold preserves well-formedness \& welltypedness of PackageFormers.

- This is the semantics function!

> - PackageFormers are an M-Set and fold is an MSet homomorphism! Call this M-Set "PF".
> 1. Two sorts: PackageFormer and Element.
> 2. Action: _ \triangleleft_{-}: PackageFormer \rightarrow Element \rightarrow PackageFormer
> 3. Monoid on PackageFormer
> * Unit: The empty PackageFormer
> * Bop: Union of contexts
> If they agree on their intersection, then union of element lists; otherwise 'crash' by yielding ANN.
> ANN is the annihilating PackageFormer: It is a postulated value that acts as the zero of union.
> - This ensures that a crash propagates and so a union of PF's is ANN if any two items conflict.
> - E.g., "crash : PackageFormer $\perp \rightarrow$ PackageFormer \perp \rightarrow Boolean" is defined with "crash $\perp \mathrm{x} \approx$ true" and symmetrically so.
> - Taking ANN $=\perp$, as a bottom element; e.g., nothing.
> - Proof outline of associativity:
> - Case 1: No crashes, then ordinary list catenation, which is associative.
> - Case 2: Some two items conflict, then ANN is propagated and both sides equal ANN

2.1 Deriving Fold

1. Define a "Right M-Set" (close, but not really):

PackageFormer M-Set : Set ${ }_{1}$ where
Carrier $_{1}$: Set
Carrier ${ }_{2}$: Set
$\triangleleft_{-} \quad:$ Carrier $_{1} \rightarrow$ Carrier $_{2} \rightarrow$ Carrier $_{1}$
$\emptyset \quad:$ Carrier $_{1}$
U : Carrier ${ }_{1} \rightarrow$ Carrier $_{1} \rightarrow$ Carrier $_{1}$
leftId : \{v: Carrier $\left.{ }_{2}\right\} \rightarrow \emptyset \triangleleft v \equiv v$
assoc $:\left\{a b:\right.$ Carrier $\left._{1}\right\}\left\{v:\right.$ Carrier $\left._{2}\right\} \rightarrow(\mathrm{a} \cup \mathrm{b}) \triangleleft v \equiv \mathrm{a} \cup(\mathrm{b} \triangleleft v)$
2. Let \mathcal{M} denote an M-Set.
3. For fold : PF $\longrightarrow \mathcal{M}$ to be an M-Set homomorphism, we are forced to have ...
4. Two maps, fold ${ }_{i}:$ PF.Carrier ${ }_{i} \rightarrow$ M.Carrier $_{i}$
5. fold $_{1}$ is a monoid homomorphism
a. Unit ${ }_{1}$: fold $_{1} \emptyset \approx \emptyset$
b. Assoc $_{1}:$ fold $_{1}(p \cup q) \approx$ fold $_{1} p \cup$ fold $_{1} q$
6. Equivariance: fold $d_{1}(p \triangleleft e) \approx$ fold $_{1} p \triangleleft$ fold $_{2}$ e
7. Since a PackageFormer, by extensionality, can always be expressed as a finite sequence of extensions we find: fold ${ }_{1} \mathrm{p}$
$=\left\{-\right.$ Extensionality, with e_{i} elements of $\left.\mathrm{p}-\right\}$
fold $_{1}\left(\emptyset \triangleleft \mathrm{e}_{1} \triangleleft \mathrm{e}_{2} \triangleleft \cdots \triangleleft \mathrm{e}_{n}\right)$
$=\{-$ Equivariance (6) -$\}$
fold $_{1} \emptyset \triangleleft$ fold $_{2} \mathrm{e}_{1} \triangleleft \cdots \triangleleft$ fold $_{2} \mathrm{e}_{n}$
$=\{-$ Unit (5.1) -$\}$
$\emptyset \triangleleft$ fold $_{2} \mathrm{e}_{1} \triangleleft \cdots \triangleleft$ fold $_{2} \mathrm{e}_{n}$
$=\{-M-S e t . l e f t I d-\}$
fold ${ }_{2} \mathrm{e}_{1} \triangleleft \cdots \triangleleft$ fold $_{2} \mathrm{e}_{n}$
8. Whence it seems fold d_{1} is defined uniquely in terms of fold ${ }_{2}$-which is unsurprising: PackageFormers are an inductive type!
9. TODO: Realise this argument within Agda!

3 An Application to Universal Algebra SUPER_SKETCHY

Grammar for the minimal language necessary to form homomorphism contexts.

- How? What? Huh!?
- I'm not sure I know what I'm thinking here.
- I'm trying to "know" what the hom variational, from the webpage does!
Define a function: \mathbf{H} : PFSyntax \rightarrow List HomoSyntax. Show a coherence such as $\mathbf{H}(\mathrm{T} \triangleleft \mathrm{e})=\mathbf{H} \mathbf{T} \triangleleft \mathbf{H e}$ where \triangleleft denotes context extension; i.e., append.
- This would ensure that we have a 'modular' way to define homomorphisms.
Applications to structures that CS people are interested in?
- Monoids \Leftarrow for-loops
- Graphs \Leftarrow databases
- Lattices \Leftarrow optimisation

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 Conference'17, July 2017, Washington, DC, USA
 (c) 2019 Association for Computing Machinery.

 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM... $\$ 15.00$
 https://doi.org/10.1145/nnnnnnn.nnnnnnn

