Do-it-yourself Module Systems

Extending Dependently-Typed Languages to Implement
Module System Features In The Core Language

PhD Defence

Musa Al-hassy
April 28, 2021

McMaster University, Hamilton, Ontario, Canada
alhassy@gmail.com

What is the problem?

Overview

With a bit of reflection, we can obtain

1. a uniform, and practical, syntax for both records (semantics) and
termtypes (syntax)

2. on-the-fly unbundling; and,

3. mechanically obtain data structures from theories

Overview

With a bit of reflection, we can obtain

1. a uniform, and practical, syntax for both records (semantics) and
termtypes (syntax)
2. on-the-fly unbundling; and,

3. mechanically obtain data structures from theories

‘theory’ 7 ‘data structure’ termtype 7
pointed set 1

dynamic system N

monoid tree skeletons

collections lists

graphs (homogeneous) pairs
actions infinite streams

What does a “module, package, context” look like?

record Monoids
(Carrier : Set)

(- : Carrier — Carrier — Carrier) : Set where
field

Id : Carrier

lid VvV A{xr = Idsx =

rid VvV {xy > x3Id =

assoc :Vi{xyz} =+ Gsy)lsz = x5 (y35 2z

Monoids model unityped composition: Sticking words on a page, sequencing

programs, following instructions.

What is in a monoid?

People work with monoids at various levels of exposure ...

What is in a monoid?

People work with monoids at various levels of exposure ...

e “Let M be a monoid, ..."

What is in a monoid?

People work with monoids at various levels of exposure ...

e “Let M be a monoid, ..."

e “Given a monoid over N, ...”

What is in a monoid?

People work with monoids at various levels of exposure ...
e “Let M be a monoid, ..."
e “Given a monoid over N, ...”

e “Consider the monoid (N, +), ..."

e (Unique viz proof irrelevance.)

What is in a monoid?

People work with monoids at various levels of exposure ...
e “Let M be a monoid, ..."
e “Given a monoid over N, ...”

e “Consider the monoid (N, +), ..."

e (Unique viz proof irrelevance.)

e “Consider the monoid (N, +, 0), ..."

“A monoid consists of a collection Carrier, an operation,

L7

record Monoidy : Set; where

field Carrier : Set

5 : Carrier — Carrier — Carrier

Id : Carrier

lid Vx> Idsx = x

rid V{x} > x3Id = x

assoc Vixyzr—- Esy)sgz = x§ (y3§2)

Use-case: The category of monoids.

“A monoid over a given collection Carrier and operation _§

—9_

is given by ensuring there is a selected point ..."?

record Monoid;

(Carrier : Set) : Set where
field -- ¢—<¢—<¢—<¢—<—<¢—<¢—<—<—<—<—<— Change here
o Carrier — Carrier — Carrier
Id Carrier
lid :V{x} > Idsx =
rid :V{x} > x3Id = x
assoc : Vi{xyz}—- Giy)sz = x5 (y3§2)

Use-case: Sharing the carrier type

record Monoids

(Carrier : Set)

(_s_ : Carrier — Carrier — Carrier) : Set where
field -- +—<¢—<—<—<—<—<—<—<%—<—<—<— Change here

Id : Carrier

lid VYV {x} > Idgx =

rid VvV {xyr > x3Id =

assoc :Vi{xyz}—- sy sz = x5 (y32)

Use-case: The additive monoid on the Natural numbers

record Monoids
(Carrier : Set)

(_s_ : Carrier — Carrier — Carrier)
(Id : Carrier) : Set where
field -- <—<¢—<¢—<¢—<—<—<¢—<—<—<—<—<— Change here
lid :V{x} > Idsx = x
rid :V{x} > x3Id = x
assoc : Vi{xyz}—- Gsy)sz = x5 (y3§ 2)

Tom Hales —Kepler Conjecture / Flyspeck

Structures are meaninglessly parameterized from a mathematical
perspective. [...] That is, what is bundled cannot be later opened
up as a parameter. [...] This means that library designers are
forced to take a conservative approach and expose as a parameter
anything that any user might reasonably want exposed, because
once it is bundled, it is not coming back.

—A Review of the Lean Theorem Prover, 2018-09-18

https://jiggerwit.wordpress.com/2018/09/18/a-review-of-the-lean-theorem-prover/

Tom Hales —Kepler Conjecture / Flyspeck

= This is a problem we are solving!

Structures are meaninglessly parameterized from a mathematical
perspective. [...] That is, what is bundled cannot be later opened
up as a parameter. [...] This means that library designers are
forced to take a conservative approach and expose as a parameter
anything that any user might reasonably want exposed, because
once it is bundled, it is not coming back.

—A Review of the Lean Theorem Prover, 2018-09-18

https://jiggerwit.wordpress.com/2018/09/18/a-review-of-the-lean-theorem-prover/

Tom Hales —Kepler Conjecture / Flyspeck

= This is a problem we are solving!

Structures are meaninglessly parameterized from a mathematical
perspective. [...] That is, what is bundled cannot be later opened
up as a parameter. [...] This means that library designers are
forced to take a conservative approach and expose as a parameter
anything that any user might reasonably want exposed, because
once it is bundled, it is not coming back.

—A Review of the Lean Theorem Prover, 2018-09-18

= “The Unbundling Problem”

https://jiggerwit.wordpress.com/2018/09/18/a-review-of-the-lean-theorem-prover/

Where does this actually happen?

Agda’s Standard Library,
RATH-Agda,
agda-categories

Haskell's Standard Library

10

What are the adjacent problems?

Maintenance of relationships ...

11

What are the adjacent problems?

Maintenance of relationships ...

Monoidg = X C : Set e Monoid; C

11

What are the adjacent problems?

Maintenance of relationships ...
Monoidg = X C : Set e Monoid; C

Monoid; C = X M : Monoidg e Monoidg.Carrier M = C

11

What are the adjacent problems?

Maintenance of relationships ...
Monoidg = X C : Set e Monoid; C

Monoid; C = X M : Monoidg e Monoidg.Carrier M = C

Termtypes?

Extensions?

Exclusions?

Pushouts: Name-relevant unions?

11

Roadmap —"PackageFormer ~ Context ~ JSON-Object”

1. The PackageFormer Prototype: A useful experimentation tool
2. The context Library: Unbundling in Agda

3. Algebraic data types as a semantics for contexts

12

The PackageFormer Prototype: A
useful experimentation tool

13

Evidence that the theory ‘actually works’

Prototype with an editor extension then incorporate lessons learned into a
DTL library!

{-700
PackageFormer M-Set : Set:

NuarRIn[J = M-Set record & single-sorted "Scalar"

{- NearRing = M-Set record -& single-sorted "Scalar” -}
record MearRing : Set, where

field Scalar : Set

field _-_ : Scalar —+ Scalar - Scalar

tield 1 : Scalar

field _=_ : Scalar - Scalar > Scalar

field leftid i{s:Scalar} > 1-0v = =

field assoc iv{abe}>{axb)-v = a-(b-o)

Generated code displayed on hover

14

But perhaps Haskell's type system does not give the pro-
grammer sufficient tools to adequately express such ideas.
As such, for the rest of this paper we will illustrate our ideas
in Agda [2, 7]. For the monoid example, it seems that there
are three contenders for the monoid interface:

record Monoidy : Set; where

field
Carrier : Set
R : Carrier — Carrier — Carrier
1d : Carrier
assoc : ¥ {xyz}

- x5y 52z=x5052)
leftld : V¥ {x} — Id 5 x = x
rightId : V {x} — x 3 Id

record Monoid; (Carrier : Set) : Set where

field
R : Carrier — Carrier — Carrier
1d : Carrier
assoc : V {xy 2z}

- (x3y) 52z
leftld : V {x} - Id 3
rightld : V (x} — x §

record Monoid,
(Carrier : Set)

(5- @ Carrier — Carrier — Carrier)
: Set where
field
1d : Carrier
assoc : ¥ {xyz}

- (x35y)32=x3C
leftld : V (x} - Id 5 x = x
rightId : V {x} — x 3 Id = x

ys52)

In Monoidy, we will call Carrier “bundled up’, while we call
it “exposed” in Monoid; and Monoids. The bundled-up ver-
sion allows us to speak of a monoid, rather than @ monoid on
a given type which is captured by Monoid;. While Monoid,
exposes both the carrier and the ition operation, we

A Language Feature to Unbundle Data at Will (GPCE

automation, may want to use the associated datatype for
syntax, For example, the syntax of closed monoid terms can
be expressed, using trees, as follows.
data Monoids : Set where
s : Monoids — Monoid; — Monoids
Id : Monoids

We can see that this can be obtained from Monoidy by discard-
ing the fields denoting equations, then turning the remaining
fields into constructors.

We show how these different presentations can be derived
from a single g d ion via a

p i into the most widely-used Agda

“IDE”, the Emacs mode for Agda. In particular, if one were
to explicitly write M different bundlings of a package with
N constants then one would write nearly N x M lines of
code, yet this quadratic count becomes linear N + M by hav-
ing a single package declaration of N constituents with M
subsequent instantiations. We hope that reducing such du-
plication of effort, and of potential maintenance burden, will
be beneficial to the software engineering of large libraries of
formal code — and consider it the main contribution of our
work.

2 PackageFormers — Being Non-committal
as Much as Possible
We claim that the above monoid-related pieces of Agda code
can be unified as a single declaration which does not distin-
guish between parameters and fields, where PackageFormer
is a keyword with similar syntax as record:
PackageFormer MonoidP : Set, where
Carrier : Set

3. : Carrier — Carrier — Carrier
d : Carrier
assoc : V {xyz)

- (x3y5z=x50352
leftld : V {x} > Id 5 x = x

rightld : V {x} - x 3 Id
(For clarity, this and other non-native Agda syntax is left un-
coloured.)

15

Definition of a Monoid

PackageFormer MonoidP : Set; where

Carrier : Set

5 : Carrier — Carrier — Carrier
Id : Carrier
assoc :Vi{xyz}—> Gsy) sz = x5 (y32)

leftIld : V {x} - 1Idgsx =

X
rightld : V {x} — x3Id = x

16

Definition of a Monoid

PackageFormer MonoidP : Set; where

Carrier : Set

5 : Carrier — Carrier — Carrier
Id : Carrier
assoc :Vi{xyz}—> Gsy) sz = x5 (y32)

leftld : V {x} —» 1Id 3 x
rightld : V {x} — x§Id =

X
X

Monoidg = MonoidP record

Monoidy = Monoidg :waist 1
Monoidp = Monoidg :waist 2
Monoidz = Monoidg :waist 3

Monoid3z' = MonoidP record —f+ unbundled 3

16

Definition of a Monoid

PackageFormer MonoidP : Set; where

Carrier : Set

5 : Carrier — Carrier — Carrier
Id : Carrier
assoc :Vi{xyz}—> Gsy) sz = x5 (y32)
leftld : V{x} - Idsx = x
rightld : V {x} — x3Id = x
Monoidg = MonoidP record Tree = MonoidP termtype-with-variables "Carrier"
Monoidy = Monoidg :waist 1 =
Monoids = Monoidg :waist 2 data Tree (Var : Set) : Set where
Monoidz = Monoidg :waist 3 inj : Var — Tree Var
Monoid3z' = MonoidP record —f+ unbundled 3 _8_ : Tree Var — Tree Var — Tree Var

Id : Tree Var

16

Definition of a Monoid

PackageFormer MonoidP : Set; where

Carrier : Set

5 : Carrier — Carrier — Carrier
Id : Carrier
assoc :Vi{xyz}—> Gsy) sz = x5 (y32)
leftld : V {x} - Idsx = x
rightld : V {x} — x3Id = x
Monoidg = MonoidP record Tree = MonoidP termtype-with-variables "Carrier"
Monoidy = Monoidg :waist 1 =
Monoids = Monoidg :waist 2 data Tree (Var : Set) : Set where
Monoidz = Monoidg :waist 3 inj : Var — Tree Var
Monoid3z' = MonoidP record —f+ unbundled 3 _8_ : Tree Var — Tree Var — Tree Var

Id : Tree Var

Linear effort in number of variations

16

Definition of a Monoid

PackageFormer MonoidP : Set; where

Carrier : Set

5 : Carrier — Carrier — Carrier
Id : Carrier
assoc :Vi{xyz}—> Gsy) sz = x5 (y32)
leftld : V {x} - Idsx = x
rightld : V {x} — x3Id = x
Monoidg = MonoidP record Tree = MonoidP termtype-with-variables "Carrier"
Monoidy = Monoidg :waist 1 =
Monoids = Monoidg :waist 2 data Tree (Var : Set) : Set where
Monoidz = Monoidg :waist 3 inj : Var — Tree Var
Monoid3z' = MonoidP record —f+ unbundled 3 _8_ : Tree Var — Tree Var — Tree Var

Id : Tree Var

Linear effort in number of variations

record : PackageFormer — PackageFormer

record = :kind record
:alter-elements (A es — (--map (map-qualifier (-const "field") it) es))
16

unions, intersections, extensions, views, ...

(V union pf (renaming; "") (renamingp, "")
(adjoin-retract; t) (adjoin-retract t)

= :alter-elements (\ es —

(let* ((p (symbol-name 'pf))

(es; (alter-elements es renaming renaming;
— :adjoin-retract nil))
(esp; (alter-elements ($elements-of p) renaming
< renaming, :adjoin-retract nil))
(es’ (-concat esy esy)))

(-concat ;; return value
es’
(when adjoin-retract; (list (element-retract $parent es
— :new es; :name adjoin-retractj)))
(when adjoin-retract, (list (element-retract p

— ($elements-of p) :new esp :name adjoin-retractz)))))))

Combinators are motivated from existing, real-world, DTL libraries!

Generated 2004 theories using the Lisp metaprogramming

framework —the MathScheme library

AdditiveMagma
LeftDivisionMagma
RightDivisionMagma
LeftOperation
RightOperation
IdempotentMagma
IdempotentAdditiveMagma
SelectiveMagma
SelectiveAdditiveMagma
PointedMagma
PointedOMagma
AdditivePointed1Magma
LeftPointAction
RightPointAction
CommutativeMagma

CommutativeAdditiveMagma =

PointedCommutativeMagma
AntiAbsorbent
SteinerMagma

Squag
PointedSteinerMagma
UnipotentPointedMagma
Sloop

Magma renaming’ "_*_
Magma renaming’ "_*_ to __"
Magma renaming’ "_*_ to _/_"
MultiCarrier extended-by’ "_))_
MultiCarrier extended-by’ "_((_

to _+_"

:U — S — 8"
:8 = U — 8"

Magma extended-by’ "#-idempotent : V (x : U) — (x * x) = x"
IdempotentMagma renaming’ "_*_ to _+_"
Magma extended-by’ "*-selective : V (xy : U) — (x*y =x) W (x xy = y)"

SelectiveMagma renaming’ "_*_ to _+_"
Magma union’ PointedCarrier

PointedMagma renaming’ "e to O"

PointedMagma renaming’ "_*_ to _+_; e to 1"

PointedMagma extended-by "pointactLeft U — U; pointactLeft x = e * x"
PointedMagma extended-by "pointactRight U — U; pointactRight x = x * e"
Magma extended-by’ "#*-commutative Vy: D= Gxy = (G*)"
CommutativeMagma renaming’ "_*_ to _+_"

PointedMagma union’ CommutativeMagma —$+ :remark "over Magma"

Magma extended-by’ "*-anti-self-absorbent : V (xy : U) — (x * (x *x y)) = y"
CommutativeMagma union’ AntiAbsorbent —P+ :remark "over Magma"

SteinerMagma union’ IdempotentMagma —B+ :remark "over Magma"

PointedMagma union’ SteinerMagma —§+ :remark "over Magma"

PointedMagma extended-by’ "unipotent V&:0) = (x*xx) =e"

PointedSteinerMagma union’ UnipotentPointedMagma

18

Primary Lessons Learned

1. Waist
2. Termtypes

3. Pragmatic

19

The Unbundling Problem —in
Agda

20

What is “the” monoid on the natural numbers?

Some types can be viewed as a monoid in more than one way, e.g.
both addition and multiplication on numbers. In such cases we often
define newtypes and make those instances of Monoid, e.g. Sum and
Product. —Hackage Data.Monoid

~

Sum @ & a {- and -} Product a X «

21

https://hackage.haskell.org/package/base-4.14.0.0/docs/Data-Monoid.html#t:Monoid

Alternate Solution to Multiple Monoid Instance Problem

Start with fully bundled ¥Monoid then expose fields as parameters on the fly.

22

Alternate Solution to Multiple Monoid Instance Problem

Start with fully bundled ¥Monoid then expose fields as parameters on the fly.

Reflection!

e Unfortunately, current mechanism cannot touch record-s directly.

e But every record is a -type...

22

Records as M"Y -types —Partitioned Contexts

e Instead of the nice syntactic sugar

record R (¢! : 71) ...

where
field

€W+l . TW+1

w+k . Tw+k

" 1) : Set

23

Records as M"Y -types —Partitioned Contexts

e Instead of the nice syntactic sugar

record R (¢! : 71) - (&" : 7%) : Set
where
field
ewHl L gwl
Ew+k . Tw+k

e Use a rawer form —eek!

R :M¢gt 7l e o e " : 7" e Set
R 2 Xel 17! o -0 o X e” g 0
o X gVt . Wil o ... ¢ X Wtk , pwtk
e 1

23

Notation —Contexts

Monoid : Context /3

Monoid = do Carrier < Set
5 < (Carrier — Carrier — Carrier)

Id < Carrier

leftld <+ V (x : Carrier) — x § Id = x

rightld < V (x : Carrier) — Id § x

assoc <+ V&xyz) - sy sz = x

End {/(}

24

What is ?

1. “Contexts” are exposure-indexed types
Context = A £/ — (waist : N) — Set /

2. The "empty context” is the unit type

End : V {/} — Context /
End {¢} = X _ — 1 {¢}

3. do-notation!
>>=_ : V {a b}
— (I : Context a)
— (V {n} — I n — Context b)
— Context (a W b)
(' >>= f) zero =Y y:I0 e f~y0
(F>>=1) (sucn) =M ~y:Tn e fyn

25

Contexts —reification

Monoid : Context
Monoid = do C < Set; _§_ : C - C — C; Id < C; ...

Monoid : Context

26

Contexts —reification

Monoid : Context
Monoid = do C < Set; _§_ : C - C — C; Id < C; ...

Monoid : Context
Monoid 1 : Set

[Application]

26

Contexts —reification

Monoid : Context
Monoid = do C < Set; _§_ : C - C — C; Id < C; ...

Monoid : Context L.
: [Application]
Monoid 1 : Set

Monoid 1 N : Set

[TypeError]

26

Contexts —reification

Monoid : Context
Monoid = do C < Set; _§_ : C - C — C; Id < C; ...

Monoid : Context L.
: [Application]
Monoid 1 : Set

Monoid 1 N : Set

[TypeError]

[—IHA unW x o T = :(AW x o T

26

Contexts —reification

Monoid : Context

Monoid = do C < Set; _§_ : C - C — C; Id < C; ...

Monoid : Context

Applicati
Monoid 1 : Set [Application]

M—=XA <M x o

C :waist w =

TypeE
Monoid 1 N : Set [BpeEe]

T = t(AW x o T

M—X (C w)

26

Monoid;

Monoid : Context
Monoid = do C < Set; _§_ : C =+ C — C; Id < C;

27

Monoid :
Monoid = do C <« Set; _§_ :

C—-C—C; Id «+ C;

Monoid :waist O

Monoid :waist O

_:C—=>C—=C e X Id :

Monoid :
Monoid = do C <

Monoid :

Monoid :

Monoid :

Monoid :

: C—>C — C;

: Set o X _3_

: Set e Set
: Set o ¥ _3_

:C—>C—>C e X Id :

:C—>C—>C e X Id:

Monoid :
= do C «

Monoid

Monoid
Monoid

Monoid
Monoid

Monoid
Monoid

:waist

:waist

:waist

:waist

Context

0
0

rwaist 2

:waist 2

Set; §_ : C —C —= C; Id < C; ...

: Set;

= 2 C:8t e 35 :C—>C—>Ce X Id:

: 1 C : Set e Set
= A C : Set

e Yy 3 :C—>C—>Ce X Id:
: [1C:Set e[l _3_ :C—C— C e Set
= AC:Set ¢ A 5_:C—C—Ce ¥ Id:

c

27

Example Instance —Additive Naturals

Ny : (Monoid (o :waist 1) N
Ny = (_+ -T -5
, 0 -- Id
, +-identity’
, +-identity”
, +-assoc

)

28

Summary: Solve the unbundling problem

‘Unbundle’ module fields as if they were parameters ‘on the fly'

29

Summary: Solve the unbundling problem

‘Unbundle’ module fields as if they were parameters ‘on the fly'

DynamicSystem : Context (i
DynamicSystem
= do State < Set
start < State
next < (State — State)
End

29

Summary: Solve the unbundling problem

‘Unbundle’ module fields as if they were parameters ‘on the fly'

DynamicSystem : Context (i N?' . (DynamicSystem :waist 1) N
DynamicSystem Nt ={(0, suc)
= do State < Set
start < State N? : (DynamicSystem :waist 2) N 0
next < (State — State) N? = (suc)
End
NO . DynamicSystem :waist O N3 . (DynamicSystem :waist 3) N 0
N® = (N, 0, suc) — suc
N =)

Without redefining DynamicSystem, we are able to fix some of its fields by
making them into parameters!

29

Datatypes for ASTs are also
Contexts too!

30

From Contexts to Syntax Definitions

Monoid
A
do C ¢+ Set; _3_ : C—=>C—C; Id : C; ...

AC:Set ¢ X 5_:C—C—>Ce X1Id:C e

AC:Set ¢ ¥ 3. :C—>C—>Ce XId:Cel

~s
AC: Set e C xC ©] cCwl
~s

wC: Set e CxC O] cCwl

31

From Contexts to Syntax Definitions

Monoid termtype : UnaryFunctor — Type
termtype 7 = Fix (X—W (sources 7))

A
do C ¢+ Set; _3_ : C—=>C—C; Id : C; ...
A

AC:Set ¢ X 5_:C—>C—>Ce XId:Ce ...

AC:Set ¢ ¥ 3. :C—>C—>Ce XId:Cel

~s
AC: Set e C xC ©] cCwl
~s

wC: Set e CxC O] cCwl

31

Monoids give rise to tree skeletons / Context

Monoid : V £/ — Context (Ysuc /)

Monoid ¢ = do Carrier < Set /
3 < (Carrier — Carrier — Carrier)
Id < Carrier
leftld <+ V {x : Carrier} — Id { x = x
rightld < V {x : Carrier} — x § Id
assoc <+ Vi{xyz}—> xsy)sz = x3§ (y32)
End {/}

32

Monoids give rise to tree skeletons / Termtype

M : Set
M = termtype (Monoid ¢p :waist 1)

that-is : M
= Fix (A X —

-- _®_, branch

X x X x 1

-- Id, nil leaf
W1

-- anvartant leftld
W 0

-- snvartant rightld
W 0

-- invariant assoc
W 0

-- the “End {{}”
w 0)

that-is = refl
33

Monoids give rise to tree skeletons / Readability

--: M
pattern emptyM
= p (inj2 (inj1 tt))

-—-:M-=>M-=M
pattern branchM 1 r
=p (inj; (1, v, tt))

-- absurd O-values
pattern absurdM a
= p (inj2 (inj2 (inj2 (inj2 a))))

34

Monoids give rise to tree skeletons / termtype Monoid =

TreeSkeleton

data TreeSkeleton : Set where
empty : TreeSkeleton
branch : TreeSkeleton — TreeSkeleton — TreeSkeleton

e “doing nothing”
to : M — TreeSkeleton
to emptyM = empty
to (branchM 1 r) = branch (to 1) (to r)
to (absurdM (inji O))
to (absurdM (inj> ()))

e “doing nothing”
from : TreeSkeleton — M
from empty = emptyM
branchM (from 1) (from r)

from (branch 1 r)

35

Summary: Contexts — {Records, Syntax}

Bring algebraic data types under the umbrella of grouping mechanisms:

36

Summary: Contexts — {Records, Syntax}

Bring algebraic data types under the umbrella of grouping mechanisms:
DynamicSystem : Context ¢y
DynamicSystem
= do State < Set
start < State
next < (State — State)
End

36

Summary: Contexts — {Records, Syntax}

Bring algebraic data types under the umbrella of grouping mechanisms:

DynamicSystem : Context ¢y data D : Set where
DynamicSystem startD : D
= do State < Set nextb : D — D

start < State
next < (State — State)
End

36

Summary: Contexts — {Records, Syntax}

Bring algebraic data types under the umbrella of grouping mechanisms:

DynamicSystem : Context ¢y data D : Set where
DynamicSystem startD : D
= do State < Set nextb : D — D

start < State
next < (State — State)
End

D = termtype (DynamicSystem :waist 1)

-- Pattern synonyms for more compact presentation
pattern startD = pu (inj; tt) --:D
pattern nextD e = py (inj2 (inj; e)) -- : D — D
trivial : D = N

36

Summary: Common data-structures as termtypes

‘theory’ T ‘data structure’ termtype 7
pointed set 1

dynamic system N

monoid tree skeletons

collections lists

graphs (homogeneous) pairs
actions infinite streams

Many more theories T to explore and see what data structures arise!

37

Conclusions

38

module constructions are born from Context

39

module constructions are born from Context

e Context: “name-type pairs”
do S + Set; s < S; n <« (S — S); End

39

module constructions are born from Context

e Context: “name-type pairs”
do S + Set; s « S; n <« (S — S); End

4 4 4 4 Y

e Record Type: “bundled-up data”
2 S:Set e X s:S e YXn:S —>S el

e Function Type: “a type of functions”
TS e Xs:S e Xxn:8S —>S el

e Type constructor: “a function on types”
AS eYs:SeXn:S—+S el

e Algebraic datatype: “a descriptive syntax”
data D : Set where s : D; n : D — D

39

Contributions

0. ldentify the module design patterns used by DTL practitioners

1. Demonstrate that there is an expressive yet minimal set of primitives
which allow common module constructions to be defined

2. Bring algebraic data types under the umbrella of grouping mechanisms

3. The ability to ‘unbundle’ module fields as if they were parameters ‘on
the fly'

4. Show that common data-structures are mechanically the (free)
termtypes of common modules

5. Demonstrate that there is a practical implementation of such a

framework

6. Finally, the resulting framework is mostly type-theory agnostic.

40

Contributions

0. ldentify the module design patterns used by DTL practitioners

1. Demonstrate that there is an expressive yet minimal set of primitives
which allow common module constructions to be defined

2. Bring algebraic data types under the umbrella of grouping mechanisms

3. The ability to ‘unbundle’ module fields as if they were parameters ‘on
the fly'

4. Show that common data-structures are mechanically the (free)
termtypes of common modules

5. Demonstrate that there is a practical implementation of such a

framework

6. Finally, the resulting framework is mostly type-theory agnostic.

= Thank-you for your time! <«
40

	What is the problem?
	The common-lispPackageFormer Prototype: A useful experimentation tool
	The Unbundling Problem —in Agda
	Datatypes for ASTs are also Contexts too!
	Conclusions

