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Abstract

In programming languages, record types give a universe of discourse (via so-called Σ-types);
parameterised record types fix parts of that universe ahead of time (via Π-types), and algebraic
datatypes give us first-class syntax (via W-types), which can then be used to program, e.g.,
evaluators and optimisers. A frequently-encountered issue in library design for statically-typed
languages is that, for example, the algebraic datatype implementing the first-class view of the
language induced by a record declaration cannot be defined by simple reference to the record
type declaration, nor to any common “source”. This leads to unwelcome repetition, and to
maintenance burdens. Similarly, the “unbundling problem” concerns similar repetition that
arises for variants of record types where some fields are turned into parameters.

The goal of this thesis is to show how, in dependently-typed languages (DTLs), algebraic
datatypes and parameterised record types can be obtained from a single pragmatic declaration
within the dependently-typed language itself, without using a separate “module language”. Be-
sides this practical shared declaration interface, which is extensible in the language, we also find
that common data structures correspond to simple theories.

Put simply, the thesis is about making tedious and inexpressible patterns of programming
in DTLs (dependently typed languages) become mechanical and expressible. The situations
described above occur frequently when working in a dependently-typed language, and it is
reasonable enough to have the computer handle them.

We develop a notion of contexts that serve as common source for definitions of algebraic
datatype and of parameterised record types, and demonstrate a “language” of “package opera-
tions” that enables us to avoid the above-mentioned replication that pervades current library
developments.

On the one hand, we demonstrate an implementation of that language as integrated edi-
tor functionality — this makes it possible to directly emulate the different solutions that are
employed in current library developments, and refactor these into a shape that uses single dec-
laration of contexts, thus avoiding the usual repetition that is otherwise required for provision
of record types at different levels of parameterisation and of algebraic datatypes.

On the other hand, we will demonstrate that the power of dependently-typed languages
is sufficient to implement such package operations in a statically-typed manner within the
language; using this approach will require adapting to the accordingly-changed library interfaces.

Although our development uses the dependently-typed programming language Agda through-
out, we emphasise that the idea is sufficiently generic to be implemented in other DTLs.
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1 The God of Abraham. In English
Bibles, His name is “Elohim”, whereas
in Arabic Bibles and the Quran, His
name is “Allah”.

.

In the Name of Allah1 —the Most Compassionate, Most
Merciful.

All praise is due to Allah, Lord of the worlds,

The Most Compassionate, Most Merciful,

Master of the Day of Judgement.

You alone we worship and You alone we ask for help.

Guide us to the straight path,

The path of those upon whom You have bestowed favour,
not of those who have earned Your anger or of those who
are astray.

—Quran

https://quran.com/1
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2 No more such oppression!
Consequently, we reset sidenote coun-
ters at the start of each chapter.

[1] Ronald L. Graham, Donald E.
Knuth, and Oren Patashnik. Con-
crete Mathematics: A Foundation for
Computer Science, 2nd Ed. Addison-
Wesley, 1994. isbn: 0-201-55802-5.
url: https://www-cs-faculty.stanford.
edu/%5C%7Eknuth/gkp.html
3 Professional academic writing to the
left; here in the right we take a relaxed
tone.
[2] Edsger W. Dijkstra. The notatio-
nal conventions I adopted, and why.
circulated privately. July 2000. url:
http : / /www . cs . utexas . edu / users /
EWD/ewd13xx/EWD1300.PDF

4 Which doesn’t matter, since you’re
likely reading this online!

[3] Douglas R. Hofstadter. Gödel, Es-
cher, Bach: an Eternal Golden Braid.
Basic Books Inc., 1979

A middle-path with margins

Imagine having to stop reading mid-sentence, go to the bottom of
the page, read a footnote, then stumble around till you get back to
where you were reading2 . Even worse is when one seeks a cryptic
abbreviation and must decode it a world-away, in the references at
the end of the document.

I would like you to be able to read this work smoothly, with minimal
interruptions. As such, inspired by Graham, Knuth and Patashnik’s
“Concrete Mathematics” [1] among others, we have opted to include
“mathematical graffiti” in the margins. In particular, the margins side
notes may have informal and opinionated remarks3 . We’re trying to
avoid being too dry, and aim at being somewhat light-hearted.

Dijkstra [2] might construe the graffiti as mathematical politeness
that could potentially save the reader a minute. Even though a char-
acteristic of academic writing is its terseness, we don’t want to baffle
or puzzle our readers, and so we use the informality of the graffiti
to say what we mean bluntly, but it may be less accurate or not as
formally justifiable as the text proper.

Some consider the puzzles that are created by their omis-
sions as spicy challenges, without which their texts would
be boring; others shun clarity lest their worth is considered
trivial. [. . . ] Some authors believe that, in order to keep
the reader awake, one has to tickle him with surprises.
[. . . ] essential for earning the respect of their readership.
—Edsger Dijkstra [2]

When there are no side remarks to be made, or a code snippet would be better viewed with greater
width, we will unabashedly switch to using the full width of the page —temporarily, on the fly, and
without ceremony.

In particular, in numerous places, we want to show the exact code generated from our prototype
—rather than an after-the-fact prettification, which would undermine the ‘utility’ of the tool.

A superficial cost of utilising margin space is that the overall page
count may be ‘over-exaggerated’4 . Nonetheless, I have found long
empty columns of margin space yearning to be filled with explanatory
remarks, references, or somewhat helpful diagrams. Paraphrasing
Hofstadter [3], the little pearls in the margins were so connected in
my own mind with the ideas that I was writing about that for me
to deprive my readers of the connection that I myself felt so strongly
would be nothing less than perverse.

https://www-cs-faculty.stanford.edu/%5C%7Eknuth/gkp.html
https://www-cs-faculty.stanford.edu/%5C%7Eknuth/gkp.html
http://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1300.PDF
http://www.cs.utexas.edu/users/EWD/ewd13xx/EWD1300.PDF
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1. Introduction

The construction of programming libraries is managed by decomposing ideas into self-contained units
that are frequently called ‘modules’, and that we will call ‘packages’. Relationships between packages
are then formalised as transformations that reorganise representations of data. Depending on the
expressivity of a language, packages may serve to avoid having different ideas share the same name
—which is usually their only use— but they may additionally serve as silos of source definitions from
which interfaces and types may be extracted. The following drawing exemplifies this idea for monoids
(which model a notion of composition): From a single definition of ‘Monoids’, we would like to be
able to obtain definition for all the other concepts via appropriate derivation mechanisms.

Monoids

Monoids
parameterised
by carrier C

Pointed
Magma

Monoid
terms

(Trees with
variables)

Homomorphisms,
products,
duals

Signature
(Tree

skeleton)

Monoids
parameterised
by a setoid

Monoids
parameterised by
carrier C and
operation ⊕

In general, such derived constructions are out of reach from within
a language and have to be extracted by hand by users who have
the time and training to do so. Unfortunately, this is the standard
approach; however, it is error-prone and disguises mechanical library
methods (that are written once and proven correct) as design patterns
(which need to be carefully implemented for each use and argued to be
correct). The goal of this thesis is to show that sufficiently expressive
languages make packages an interesting and central programming
concept by extending their common use as silos of data with the
ability for users to mechanically derive related ideas (programming
constructs) as well as the relationships [4, 5] between them.
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1.1. PRACTICAL CONCERN ]1: RENAMING AND
REMEMBERING RELATIONSHIPS 9

[6] Wolfram Kahl. Relation-Algebraic
Theories in Agda. 2018. url: http:
//relmics.mcmaster.ca/RATH-Agda/
(visited on 10/12/2018)

[7] Jacques Carette and Russell
O’Connor. “Theory Presentation
Combinators”. In: Intelligent Com-
puter Mathematics (2012), pp. 202–
215. doi: 10.1007/978-3-642-31374-
5_14

When developing libraries, such as [6], in the dependently-typed
language (DTL) Agda, one is forced to mitigate a number of hurdles.
We turn to these hurdles (some of which are also discussed clearly in
[7]) in Sections 1.1 to 1.4, where we provide a first, brief presentation
of the motivating problems that arise when working in a DTL; these
will be discussed in greater detail in Chapter 3 after we cover the
necessary background in Chapter 2. Since a proper explanation of
the contributions of this thesis requires the detailed explanations in
Chapter 3 of the motivations, which in turn build on the background
knowledge expanded in Chapter 2, we delay the presentation of our
contributions until Chapter 4.

For the remainder of this chapter, Section 1.5 briefly discusses our
desire to have our resulting system be usable, Section 1.6 contains an
overview of the whole thesis, and Section 1.7 explains the relationship
to previous publications.

1.1. Practical Concern ]1: Renaming and
Remembering Relationships

There is excessive repetition in the simplest of tasks when working
with packages. For example, to uniformly decorate the names in
an Agda package with subscripts 0, 1, 2 (similar to the decorations
of the Z-notation) requires the package’s contents be listed twice. It
would be more economical to apply a renaming function to a package.
More generally, we frequently want to perform a renaming to view
an idea in a more natural, concrete setting; the following drawing
indicates some candidates for the basic concept of magma (a carrier
set with a single binary operation):

Numeric
_+_

Sets
_ ∪ _

Lists
_++_

(Catenation)

Programs
_;_

(Sequencing)

Magma
Carrier

op

???
???

??? ??
?

??
? ???

???

???
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http://relmics.mcmaster.ca/RATH-Agda/
https://doi.org/10.1007/978-3-642-31374-5_14
https://doi.org/10.1007/978-3-642-31374-5_14
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0 coe : Numeric → Magma
coe record {Numeric = N; _+_ = op}

= record {Carrier = N; op = op}

[8] François Garillot et al. “Packaging
Mathematical Structures”. In: Theo-
rem Proving in Higher Order Logics.
Ed. by Tobias Nipkow and Christian
Urban. Vol. 5674. LNCS. Springer,
2009. url: https://hal.inria.fr/inria-
00368403

1 Define f : X × Y → Z
by projecting fields as needed
f p = · · · fst p · · · snd p · · ·
or by exposing the fields directly
f (x, y) = · · · x · · · y · · · .
But to ‘curry’ is another matter:
f' = λ x • λ y • · · · x · · · y · · · .

In this picture, given the starting point in the center, we would
like to be able to derive the surrounding candidate constructions, to-
gether with implementations of the (red) relationships between them.
However, shallow renaming mechanisms lose the relationships to the
original parent package and so ‘do nothing’ coercions0 have to be writ-
ten by hand. Concrete examples of how several large Agda projects
work around these renaming-related issues will be discussed in Sec-
tion 3.2. (The need to ‘remember relationships’ is shared by the other
concerns discussed in this section.)

1.2. Practical Concern ]2: Unbundling

In general, in a DTL, packages behave like functions in that they may
have a subset of their contents designated as parameters exposed at
the type-level which users can instantiate. The shift between the two
forms is known as the unbundling problem [8].

For example, if Group and Monoid are defined in the usual way,
with the carrier being ‘bundled up’ as a constituent, then theorem
statements about ‘a group and a monoid on the same carrier’ require
a setup involving an ‘after-the-fact constraint’:

∀ (G : Group) (M : Monoid)
→ Group.Carrier G ≡ Monoid.Carrier M
→ · · ·

If unbundled definitions GroupOn and MonoidOn are available, this
can be expressed more clearly in the following way:

∀ (C : Set) (G : GroupOn C) (M : MonoidOn C) → · · · .

The unbundling problem is essentially how to obtain GroupOn from
Group without repeating almost all of the Group definition.

Unfortunately, library developers generally provide only a few vari-
ations on a package; such as having no parameters or having only
functional symbols as parameters. Whereas functions can bundle-up
or unbundle their parameters using currying and uncurrying, only the
latter is generally supported and, even then, not in an elegant fash-
ion. Rather than provide several variations on a package, it would
be more economical to provide one singular fully-bundled package
and have an operator that allows users to declaratively, “on the fly”,
expose package constituents as parameters. It is interesting to note
that the unbundling problem appears in a number of guises within the
setting of programming language design. For instance, it can be seen
in numerous popular languages, including Haskell and JavaScript, in
the form1 of pattern matching, or de-structuring ; wherein explicit
treatment of record arguments as packaging mechanisms, silently

CHAPTER 1. INTRODUCTION
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2 There are rare exceptions. E.g.,
some members of the non-DTL ML
language family allow first-class
modules.

3 With abstractions comes ease of
understanding and manipulation.

System (collection) of relationships

Matrices

Linear Transformations

4 The matrix equation A · x = B captures the
system of equations with coefficients from A,
unknowns from x, and B are the ‘target
coefficients’.
5 An interesting aside is that a
collection mechanism gave rise to
the abstract matrix concept, which
is then seen as a reification of the
even more abstract notion of linear
transformation between vector
spaces —which are in turn,
packages parameterised over fields
(and, in practice, over bases).

disappears in the presentation of function definitions. Then, implicit
currying is the feature that allows the presentation to accommodate
arguments sequentially (“one at a time”) rather than “all at once”.

Further in-depth discussion of unbundling issues is presented in
Section 3.1.

1.3. Theoretical Concern ]1:
Exceptionality

Dependently-typed languages blur the distinction between expres-
sions and types, treating them as the same thing: Terms. This col-
lapses a number of seemingly different language constructs into the
same thing. Unfortunately, in most2 programming languages, pack-
ages are treated as exceptional values that differ from usual values
—such as functions and numbers— in that the former are ‘second-
class citizens’ which only serve to collect the latter ‘first-class citi-
zens’. This forces users to learn two families of ‘sub-languages’ —one
for each citizen class. There is essentially no theoretical reason why
packages do not deserve first-class citizenship, and so receive the same
treatment as other unexceptional values. Another advantage of giv-
ing packages equal treatment is that we are inexorably led to wonder
what computable algebraic structure they have and how they
relate to other constructs in a language; e.g., packages are essentially
record-valued functions.

Perhaps the most famous instance of the promotion3 of a second-
class concept to first-class status comes from linear algebra, and sub-
sequently, the theory of vector spaces. When there are a number
of relationships involving a number of unknowns, the relationships
could be ‘massaged algebraically’ to produce simper constraints on
the unknowns, possibly providing ‘solutions’ to the system of rela-
tionships directly. The shift from systems of equations that serve to
collect relationships, to matrices (expressing equations4 ) gave way to
the treatment of such systems as algebraic entities unto themselves:
They can be treated with nearly the same interface as that of integers,
say, that of rings.5 As such, ‘component-wise addition of equations
in system A with system B’ becomes more tractable as A + B and
satisfies the many familiar properties of numeric addition. Even more
generally, for any theory of ‘individuals’ one can consider the associ-
ated matrix theory —e.g., if M is a monoid, then the matrices whose
elements are drawn from M inherit the monoidal structure— and so
give a construction of system of equations on that theory. To inves-
tigate the algebraic nature of packaging mechanisms is another aim
of this thesis.
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1.4. Theoretical Concern ]2: Syntax
Packages, as we call them, serve to group together sequences of declarations. If any declarations
are opaque, not fully defined, they become, what we call, parameters of the package —which may
then be identified as a record type with the opaque declarations called fields. However, when a
declaration is intentionally opaque not because it is missing an implementation, but rather it acts
as a value construction itself, then one uses algebraic data types, or ‘termtypes’. Such types share
the general structure of a package, as shown in the code block below, so it would be interesting
to illuminate the exact difference between the concepts —if any. In practice, one forms a record
type to model an interface, instances of which are actual implementations, and one forms an
associated termtype to describe computations over that record type, thereby making possible a
syntactic treatment of the interface, via which, for example, textual substitution, simplification
and optimisations, and evaluators can be implemented.

Closely-related definitions

Theory of monoids

record Monoid : Set1 where
C : Set
-- function symbols
;_ : C → C → C
Id : C
-- axioms
lid : ∀ x → Id ; x ≡ x
rid : ∀ x → x ; Id ≡ x
assoc : ∀ x y z

→ (x ; y) ; z
≡ x ; (y ; z)

Monoid operations versus expressions:

_#_ ≈ Branch
Id ≈ Nil

Terms over ‘variables’ C

data Term (C : Set) : Set where
-- injection
embed : C → Term C
-- function symbols
_;_ : Term C → Term C → Term C
Id : Term C

Binary trees with leaf labels drawn
from C

data Tree (C : Set) : Set where
Leaf : C → Tree C
Branch : Tree C

→ Tree C → Tree C
Nil : Tree C

For example, the record type of monoids models composition, whereas the termtype of binary
trees acts as a description language for monoids. These can be rendered in Agda as shown
above. The problem of maintenance now arises: Whenever the record type is altered, one
must mechanically update the associated termtype. It would be more economical to extract
both record types and termtypes from a single package declaration.

“Termtype” terminology

We will refer to algebraic data types as termtypes, rather than term type or term-type.
The reason for doing so is that in Chapter 2 we will discuss terms and types, and come to see them
as indistinguishable —for the most part. As such, the phrase term type could be read ambiguously as
“the type of terms” or as “the term denoting a type”. For these reasons, we have chosen “termtype”.
Moreover, in Chapter 7, we will form a macro that consumes a particular kind of package and yields a
termtype: The name of the macro is termtype.

CHAPTER 1. INTRODUCTION
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6 “Thesis outline”:

Real-
world

use cases

IDE
Prototype

DTL
Library

1.5. Guiding Principle: Practical Usability

In this thesis, we aim to mitigate the above concerns with a focus on
practicality. A theoretical framework may address the concerns, but
it would be incapable of accommodating real-world use-cases when it
cannot be applied to real-world code. For instance, one may speak of
‘amalgamating packages’, which can always “be made disjoint”, but
in practice the union of two packages would likely result in name
clashes —which could be avoided in a number of ways; i.e., selected,
automatic, protocols— but the user-defined names are important and
so a result that is “unique up to isomorphism” is not practical. As
such, we will implement a framework to show that the above concerns
can be addressed in a way that actually works.

1.6. Thesis Overview

The remainder of the thesis is organised as follows.6

Chapter 2 consists of preliminaries, to make the thesis
self-contained.

An introduction to grammars and elementary type theory, along
with a motivation of the dependent type formers of Π- and Σ-types.

Chapter 2 is intentionally written in “blog style”, and goes out
of its way to explain basic ideas using analogies and ‘real-life
(non-computing) examples’.

Section 2.4 contains a brief overview of dependently-typed pro-
gramming with Agda, with a focus on packaging constructs: Name-
spacing with module, record types with record, and as contexts with
Σ-padding.

Chapter 3 consists of real world examples of problems
encountered with the existing package system of Agda.

Along the way, we identify a set of DTL design patterns that users
repeatedly implement. An indicator of the practicality of our re-
sulting framework is the ability to actually implement such patterns
as library methods.

Chapter 4 discusses the technical contributions of the
thesis.

Building on the preliminaries reviewed thus far, we now present a
survey of package systems in DTLs, and in that context outline the

CHAPTER 1. INTRODUCTION
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7 Generating Agda Code

Type-
checked
Agda

Emacs
Lisp

contributions of this thesis. The contributions listed will then act as
a guide for the remainder of the thesis.

Chapter 5 provides an Π-Σ-W view of structuring mech-
anisms as well as a discussion of related work.

The interdefinability of various packaging constructs is demon-
strated. Afterwards is a quick review of other DTLs that shows that
the idea of a unified notion of package is promising —Agda is only
the language we have chosen for presentation, but the ideas trans-
fer to other DTLs. Finally, we sketch out our approach, abstractly,
to actually using contexts to obtaining different semantics —such as
parameterised records and termtypes.

Chapter 6 discusses a prototype that addresses nearly all
of our concerns.

We implemented a prototype package manipulation framework as
an editor extension of Emacs, the main development environment for
Agda.7 Therefore, package manipulations are written in Lisp rather
than in the target language, Agda. However, the ability to rapidly,
textually, manipulate a package makes the prototype an extremely
useful tool to test ideas and implementations of package combina-
tors. In particular, the aforementioned example of forming unions of
packages is implemented in such a way that the amount of input re-
quired —such as along what interface should a given pair of packages
be glued and how name clashes should be handled— can be ‘inferred’
(when not provided) by making use of Lisp’s support for keyword
arguments. Moreover, the union operation is a user-defined combi-
nator: It is a possible implementation by a user of the prototype,
built upon the prototype’s “package meta-primitives”.

Chapter 7 takes the lessons learned from the prototype
to show that DTLs can have a unified package system within the
host language.

The prototype is given semantics as Agda types and functions by
forming a practical library within Agda that achieves the core fea-
tures of the prototype. The switch to a DTL is nontrivial due to
the type system; e.g., fresh names cannot be arbitrarily introduced
nor can syntactic shuffling happen without a bit of overhead. The
resulting library is both usable and practical, but lacks the immense
power of the prototype due to the limitations of the existing imple-
mentation of Agda’s metaprogramming facility. As an application,
we demonstrate how ubiquitous data structures in computing arise
mechanically as termtypes of simple ‘mathematical theories’ —i.e.,
packages.

The full working code may be found in Appendix A.
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8 How most people use packages:

Parameterised
Namespacing

9 Alternative usage paths:

Definition
Silo

(Namespacing)

Record
Types

Algebraic
Data
Types

[9] Luka Stanisic and Arnaud
Legrand. “Effective Reproducible
Research with Org-Mode and Git”. In:
Euro-Par 2014: Parallel Processing
Workshops — Euro-Par 2014 Inter-
national Workshops, Porto, Portugal,
August 25–26, 2014, Revised Selected
Papers, Part I. 2014, pp. 475–486.
doi: 10.1007/978-3-319-14325-5_41

[10] Musa Al-hassy, Jacques Carette,
and Wolfram Kahl. “A language
feature to unbundle data at will
(short paper)”. In: Proceedings of
the 18th ACM SIGPLAN Interna-
tional Conference on Generative Pro-
gramming: Concepts and Experiences,
GPCE 2019, Athens, Greece, Octo-
ber 21-22, 2019. Ed. by Ina Schae-
fer, Christoph Reichenbach, and Tijs
van der Storm. ACM, 2019, pp. 14–
19. isbn: 978-1-4503-6980-0. doi: 10.
1145/3357765.3359523

Chapter 8 concludes with a discussion about the results
presented in the thesis.

The underlying motivation for the research is the conviction that
packages play8 the crucial9 role for forming compound computations,
subsuming both record types and termtypes.

Appendix A is just the code for the Context library.

The design of this code is discussed at length in Chapter 7. More
precisely, Chapter 7 is a literate program using the approach of Stanisic
and Legrand [9], and Appendix A has been tangled from the source
of Chapter 7.

1.7. Relationship with Previous
Publications

The research towards this thesis has so far led to one publication, [10],
where the main author was the author of this thesis, and the paper
reports on an early version of the prototype presented in Chapter 6,
developed by the author of this thesis alone.
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2. Packages and Their Parts

Chapter 2 is intentionally written in “blog style”.
It starts with an introduction to grammars and elementary type theory, along with a
motivation of the dependent type formers Π and Σ types, going out of its way to explain
basic ideas using analogies and ‘real-life (non-computing) examples’.
This chapter ends with a brief overview of dependently-typed programming with Agda
in Section 2.4, with a focus on packaging constructs: Namespacing with module, record
types with record, and as contexts with Σ-padding.

Syntax Written text; a se-
quence of symbols

Well-
formed

Adherence to a particular organi-
sation; e.g., grammatically correct

Types Classifications of sentence parts

Seman-
tics

An idea, or thing, “pos-
sible in some world”

Package A language consisting of a
vocabulary and sentences

Combi-
nator

A translation of ideas in one
language (package) into another

The purpose of language is to communicate ideas that
‘live’ in our minds —conversely, language also influences
the kinds of thoughts we may have.1 In particular, writ-
ten text captures ideas independently of the person who
initially thought of them. To understand the idea behind
a written sentence, people agree on how sentences may
be organised and what content they denote from their
parts. For example, in English, a sentence is considered
‘well-formed’ if it is in the order subject-verb-object —
such as “Jim ate the apple”— and it is considered ‘mean-
ingful’ if the subject and object are noun phrases that
denote things in a world that could exist and the verb is
a possible action by the subject on the object. For in-
stance, in the previous example, there could be a person
named Jim who could eat an apple, and so the sentence
is meaningful. In contrast, the phrase “the colourless
green apple kissed Jim” is well-formed but not meaning-
ful: The indicated action could happen, say, in a world
of sentient apples; however, the subject —“the colourless
green apple”— cannot possibly exist since a thing cannot be both lacking colour but also having

1 Linguistics. The idea that language limits the kinds of thoughts one can have is known as the Sapir-Whorf
Hypothesis [11, 12, 13, 14] and it has largely been discredited in-preference to the weaker idea that language
influences the kinds of thoughts one can have. For instance, in Arabic the singular word akaltuha tersely
captures an idea, a sentence, that would require three words in English —namely, I ate it. For a computing
example, in Prolog one may write a constraint solver —say to find a solution to a Suodku puzzle— which
would require tenfold the number of lines in, say, Python since the former is intended to work with constraint
problems. As such, thoughts can be had in different language, but some languages may allow thoughts to be
more easily expressed.
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colour at the same time.2 Moreover, depending on who you ask, the action of the previous
example —the [. . . ] apple kissed Jim—, may be ludicrous on the basis that kissing is ‘classified’
as a verb whose subject, in the ‘real’ world, has the ability to kiss. As such, ‘meaningfulness’
is not necessarily fixed, but may vary. Likewise, as there is no one universal language spoken
by all people, written text is also not fixed but varies; e.g., a translation tool may convert an
idea captured in Arabic to a related idea captured in French. It is with these observations that
we will discuss the concepts required to have a formal theory of packages, as summarised in the
figure above.

Game-Play Analogy

The contents of the above figure are a bit abstract; so we reach for a concrete game-play
based analogy that may make the concepts more accessible.

Programming, as is the case with all of mathematics, is the manipulation of symbols
according to specific rules. Moreover, like a game, when one plays —i.e., shuffles symbols
around— one may interpret the game pieces and the actions to denote some meaning,
such as reflecting aspects of the players or of reality. Many play because it is fun to do
so —i.e., the game has intrinsic, built-in, value—; there are only pieces (mathematical
symbols or terms) and rules to be followed, and nothing more. Complex games may
involve a number of pieces (terms) which are classified by the types of roles they serve,
and the rules of play allow us to make observations or judgements about them; such
as, “in the stage Γ of the game, game piece x serves the role τ ” and this is denoted
Γ ` x : τ mathematically. Games which allow such observations are called type theories
in mathematics. When games are played, they may override concepts in reality; e.g.,
in Chess, the phrase Knight’s move refers to a particular set of possible plays and has
nothing to do with knights in the real-world. As such, one calls the collection of specific
game words, and what they mean, within a game (type theory) the object-language and
uses the phrase meta-language to refer to the ambient language of the real-world. As it
happens, some games have localised interactions between players where the rules may be
changed temporarily and so we have games within games, then the object-language of
the main game becomes the meta-language of the inner game. The objects of the game
and their interaction rules, are its lexicon and grammar, together forming its syntax ;
and what the game means is its semantics. To say that a game piece (term) denotes

2 Green Apples. In our cursory glance of linguistic examples we spoke of green apples with the implicit
understanding that green is an adjective that qualifies its subject, rather than green apples being taken as an
atomic name of a species of apples that may not necessarily be green. That is, when we speak of P x we mean
an individual entity x that has the property P. This somewhat natural convention is superficially problematic
in mathematics; so much so that it is dubbed the red-herring principle. Indeed, in mathematical practice,
adjectives are often used to qualify their subjects in what seems like a contradictory fashion. For example, a
semigroup is a non-unitial monoid is a terse summary of the, possibly unfamiliar, notion of semigroup using,
the possibly more familiar, notion of monoid. However, a monoid, by definition, has a unit and so the phrase
non-until monoid is technically meaningless; instead, it denotes the notion of a monoid with all references to
a unit dropped, ignored. Interestingly, this use of adjectives to “dropping details” is a common combinator
for producing new packages from old, as we will come to see.
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(extensionally) some idea I, we need to be able to express that idea which may only be
possible in the meta-language; e.g., pieces in a mini-game within a game may themselves
denote pieces within the primary game —more concretely, a game may require a roll
of a die whose numbers denote, or refer to, players in the main game which are not
expressible in the mini-game. A model of a game (type theory) is an interpretation of
the game’s pieces in way that the rules are true under the interpretation.

To see an example of packages, consider the following real-world examples of dynamical
systems. First, suppose you have a machine whose actions you cannot see, but you have a
control panel before you that shows a starting screen, start, and the panel has one button,
next, that forces the machine to act which updates the screen. Moreover, there is a screen
capture called thrice which happens to be the result of pressing next three times after starting
the machine. Second, suppose you are an artist mixing colours together.

Machine

State : Type
start : State
next : State → State
thrice : State
thrice = next (next (next start))

Colours

Colour : Type
red : Colour
green : Colour
blue : Colour
mix : Colour × Colour → Colour
purple : Colour
purple = mix red blue
dark : Colour → Colour
dark c = mix c blue

(The bold emphasis, on certain key words, below is intended as an informal definition of
ideas to be fleshed out later in the chapter.)

Each of these is a package3: A sequence of ‘declarations’ of operations; wherein elements may
be ‘parameters’ in the declarations of others. A declaration is a “name : classification” pair of
words, optionally with another “name = definition” pair of words that shows how the new word
name can be obtained from the vocabulary already declared thus far. For example, in these
packages (languages) thrice and purple are aliases for expressions (sentences) constructed
3 Interfaces. By the end of the thesis, we hope the reader will see that there is essentially no theoretical
distinction between: Packages, modules, classes, interfaces, records, and contexts. As such, we are inten-
tionally using them as if they were synonymous —which contradicts popular usages. Briefly, a package with
one parameter p, and declarations ds that may use the parameter, is essentially a function λ p → ds' that
takes in a value for the parameter p and returns the package’s declarations ds in the shape of a record of
declarations ds'; finally, the main distinction between p and ds is that the declarations consist of a type
declaration with associated definitions whereas p is only a type declaration lacking a definition, and so we
treat packages as contexts “ p; ds ” and refer to non-definitional declarations as parameters. Traditionally, a
‘parameter’ refers to a part of the discussion that is allowed to vary and we are locally overriding the meaning
of the word. Dear reader, whenever you read an article, the phrase “the author” changes it meaning, and so
you have already encountered local overrides —even more so, when authors declare their conventions at the
start of their papers; e.g., for brevity, ‘ring’ means a commutative ring with one.

CHAPTER 2. PACKAGES AND THEIR PARTS



19

from other words. A parameter —also known as a field— is a declaration that is not an alias;
i.e., it has no associated =-pair. Parameters are essentially the building blocks of a language;
they cannot be expressed in terms of other words. A non-parameter is essentially fully defined,
implemented, as an alias of a mixture of earlier words; whereas parameters are ‘opaque’ —not
yet implemented. In particular, in the colours example above, dark defines a function that uses
the symbolic name mix in its definition. There is an important subtlety between mix and dark:
The latter, dark, is an actual function that is fully determined when an implementation of the
symbolic name mix is provided. The (parameter) name mix is said to be a function symbol
rather than a function: It is the name of a function, but it lacks any implementation and is
thus not actually a function. A function symbol is to a function, like a name is to a person:
Your name does not fully determine who you are as a person.

This chapter is organised as follows. Section 2.1 sketches out the English sentences example
from above —on colours— introducing the notation used for declaring grammars of languages,
along with typing contexts. Section 2.2 then extrapolates the key insights using the idea of
signatures. In Section 2.3, the desire to present packages (signatures) practically in a uniform
notation —to reduce the number of distinctions— leads to types that vary according to other
types, thereby motivating Π-types; then the (un)bundling problem is used to motivate the
introduction of Σ-type. Finally, the chapter concludes, in Section 2.4, with a terse review of the
Agda language as a tool supporting the ideas of the previous subsections. In particular, the ideas
presented earlier in the chapter (Π, Σ, grammars) gain life in Agda as records, namespacing
modules, and algebraic datatypes (respectively).
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3 This is a collection of English
sentences that may result from the
lips of a person who is mad.
Example phrases include He Ate
The Apple, He Ate Jim, and Apple
Kissed The Jim —whereas the first
is reasonable, the second is
worrisome, and the final phrase is
confusing.

[15] Noam Chomsky. “A Note on
Phrase Structure Grammars”. In: Inf.
Control. 2.4 (1959), pp. 393–395. doi:
10.1016/S0019-9958(59)80017-6

[16] Noam Chomsky. “On Certain
Formal Properties of Grammars”. In:
Inf. Control. 2.2 (1959), pp. 137–167.
doi: 10.1016/S0019-9958(59)90362-6

[17] R. I. Chaplin, R. E. Crosbie, and
J. L. Hay. “A Graphical Represen-
tation of the Backus-Naur Form”. In:
Comput. J. 16.1 (1973), pp. 28–29.
doi: 10.1093/comjnl/16.1.28

[18] Guoyong, Peimin Deng, and Jiali
Feng. “Specification based on Backus-
Naur Formalism and Programming
Language”. In: The Third Asian
Workshop on Programming Languages
and Systems, APLAS’02, Shang-
hai Jiao Tong University, Shanghai,
China, November 29 - December 1,
2002, Proceedings. 2002, pp. 95–101

[19] Jeroen F. J. Laros et al. “A for-
malized description of the standard hu-
man variant nomenclature in Extended
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form. 12.S-4 (2011), S5. doi: 10.1186/
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736. doi: 10.1145/355588.365140

2.1. What is a language?

In this section we introduce two languages in preparation for the ter-
minology and ideas of the next section. The first language, Madlips,
will only be discussed briefly and is mentioned due to its inherit ac-
cessibility, thereby avoiding unnecessary domain specific clutter and
making definitions clearer.

Madlips:3 Simple English sentences have the form subject-verb-
object such as “Jim ate the apple”. To mindlessly produce such sen-
tences, one must produce a subject, then a verb, then an object —all
from given lists of possibilities. A convenient notation to describe a
language is its grammar [15, 16] presented in Backus-Naur Form [17,
18, 19, 20] as shown below.

Madlips Grammar

Subject ::= Jim | He | Apple
Verb ::= Ate | Kissed
Object ::= The Subject | Subject
Sentence ::= Subject Verb Object

The notation τ ::= c0 | c1 | . . . | cn defines the name τ as an
alias for the collection of words —also called strings or constructors—
c0 or c1 or . . . or cn; that is the bar ‘|’ is read ‘or’. The name τ
is also known as a syntactic category. For example, in the Madlips
grammar, Subject is the name of the collection of words Jim, He, and
Apple. A constructor may be followed by words of another collection,
which are called the arguments of the constructor. For example, the
Object collection has a The constructor which must be followed by a
word of the Subject collection; e.g, The Apple is a valid value of the
Object collection, whereas The is just an incomplete construction
of Object words. The last clause of Object is just Subject: An
invisible (unwritten) constructor that takes a value of Subject as its
argument; e.g., He and all other values of Subject are also values
of the Object collection. Similarly, the Sentence collection consists
of one invisible (unwritten) constructor that takes 3 arguments —a
subject, a verb, and an object. Below is an example derivation of a
sentence in the language generated by this grammar ; at each ‘→’ step,
one of the collection names is replaced by one of its constructors until
there are no more possible replacements —justifications are shown to
the right.
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4 We are treating sequences of
symbols extensionally as mere
representations, denotations, of
unique ideas. For instance, in a
context where He refers to Jim, we
may as well say He Ate The Apple
is the same as Jim Ate The Apple.
However, the previous two Madlips
sentences are intrinsically, by their
very syntactic nature, distinct.
Some operations are only possible
when we treat sentences in one
mode or the other; e.g., sentence
decomposition is syntactic.

Example Derivation

Sentence
→ Subject Verb Object -- Definition of ‘Sentence’
→ Jim Verb Object -- Choose a ‘Subject’ value
→ Jim Ate Object -- Choose a ‘Verb’ value
→ Jim Ate The Subject -- Construct an ‘Object’ value
→ Jim Ate The Apple -- Choose a ‘Subject’ value

Similarly, one may form He Kissed Jim as well as the
meaningless4 sentence Apple Kissed He.

� The first is vague, the pronoun ‘He’ does not designate a known
person but instead “stands in” for a variable, yet unknown, per-
son. As such, the first sentence can be assigned a meaning once
we have a context of which pronouns refer to which people.

� The second just doesn’t make sense. Sometimes nonsensical
sentences can be avoided by restructuring the grammar, say,
by introducing auxiliary syntactic categories. A more general
solution is to introduce judgement rules that characterise the
subset of sentences that are sensible.

We will return to the notions of context and judgement after the next
example language.

Freshmen: Introductory computing classes are generally inter-
ested in arithmetic that involves both numeric and truth values —
also known as Boolean values. We can capture some of their ideas
with the following grammar.

Freshmen Grammar

Term ::= Zero | Succ Term | Term + Term -- Numeric portion
| True | False | Term ≈ Term -- Boolean portion

Unlike the previous grammar, instead of + Term Term to declare
a constructor ‘+’ that takes two Term values, we write the operation
_+_ as an infix operation in the middle, since that is a common
convention for such an operation. Likewise, Term ≈ Term specifies a
constructor _≈_ that takes two term values.

(With this, we are following the general convention to use under-
scores “_” to denote the position of arguments to constructions that
do not appear first in a term. For example, one writes if_then_else_
to indicate that we have a construction that takes three arguments,
as indicated by the number of underscores; whence in a term such as
if x then y else z it is understood that we have the construction
if_then_else_ applied to the arguments x, y, and z.)
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Example terms include the numbers Zero, Succ Zero, and Succ Succ Zero—which denote
0, 1 (the successor of zero), and 2 (the successor of the successor of zero). The sensible Boolean
terms True ≈ False and True are also possible —regardless of how true they may be. However,
the nonsensical terms True + False and Zero ≈ True are also possible. As mentioned earlier,
judgement rules can be used to characterise the sensible terms: The relationship “term t is an
element of kind τ ”, written t : τ is defined by (1) introducing a new syntactic category (called
“types”) to ‘tag’ terms with the kind of elements they denote, and (2) declaring the conditions
under which the relationship is true.

Types for Freshmen

Type ::= Number | Boolean

Judgement Rules

Zero : Number

t : Number

Succ t : Number

s : Number t : Number

s + t : Number True : Boolean

False : Boolean

s : Number t : Number

s ≈ t : Boolean

s : Boolean t : Boolean

s ≈ t : Boolean

A rule “ premises
conclusion ” means “if the top parts are all true, then the bottom part is also true”

—for instance, in elementary school, one may have seen “ +
11
1

12 ” for arithmetic—; some rules
have no premises and so their conclusions are unconditionally true. That these are judgement
rules means that a particular instance of the relationship t : τ is true if and only if it is the
conclusion of ‘repeatedly stacking’ these rules on each other. For example, below we have a
derivation tree that allows us to conclude the sentence Zero ≈ Succ Zero is a Boolean term
—regardless of how true the equality may be. Such trees are both read and written from the
bottom to the top, where each horizontal line is an invocation of one of the judgement rules from
above, until there are no more possible rules to apply.

Zero : Number

Zero : Number

Succ Zero : Number

Zero ≈ (Succ Zero) : Boolean

This solves the problem of nonsensical terms; for example, True + Zero cannot be assigned a
type since the judgement rule involving _+_ requires both its arguments to be numbers. As such,
consideration is moved from raw terms, to typeable terms. The types can be interpreted as well-
definedness constraints on the constructions of terms. Alternatively, types can be considered
as abstract interpreters in that, say, we may not know the exact value of s + t but we know
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that it is a Number provided both s and t are numbers; whereas we know nothing about Zero
+ False.

Concept Intended Interpretation
type a collection of things
term a particular one of those things
x : τ the declaration that x is indeed within collection τ

There is one remaining ingredient we have yet to transfer over from the Madlips setting:
Pronouns, or variables, which “stand in” for “yet unknown” values of a particular type. Since
a variable, say, x, is a stand-in value, a term such as x + Zero has the Number type provided
the variable x is known, in a context, to be of type Number as well. As such, in the presence of
variables, the typing relation _:_ must be extended to, say, _`_:_ so that we have typed terms
in a context.

Γ ` t : τ ≡ “In the context Γ, term t has type τ ”

A context, denoted Γ, is simply a list of associations: In Madlips, a context associates pronouns
with the names of people they refer to; in Freshmen, a context associates variables with their
types. For example, Γ : Variable→ Type; Γ(x) = Number associates the Number type to every
variable. In general, a context only needs to mention the pronouns (variables) used in a sentence
(term) for the sentence (term) to be understood, and so it may be presented as a set of pairs
Γ = {(x1, τ1), . . . , (xn, τn)} with the understanding that Γ(xi) = τ i. However, since we want
to treat each association (xi, τ i) as saying “xi has type τ i”, it is common to present the tuples
in the form xi : τ i —that is, the colon ‘:’ is overloaded for denoting tuples in contexts and for
denoting typing relationships.

Extending Freshmen with Variables

Term ::= · · · | Variable
Variable ::= x | y | z

We have one new rule to type variables, which makes use of the underlying context.

Γ(x) = τ

Γ ` x : τ

All previous rules must now additionally keep track of the context; e.g., the _+_ rule becomes:

Γ ` s : Number Γ ` t : Number

Γ ` s + t : Number

We may now derive x : Number ` x + Zero : Number but cannot complete the senseless
phrase x : Boolean ` x + Zero : ???. That is, the same terms may be typeable in some
contexts but not in others.
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Before we move on, it is interesting to note that contexts can themselves be presented with
a grammar —as shown below, where constructors ‘,’ and ‘:’ each take two arguments and are
written infix; i.e., instead of the usual , arg1 arg1 we write arg1 , arg2. Contexts are well-
formed when variables are associated at most one type; i.e., when contexts represent ‘partial
functions’.

Grammar for Contexts

Context ::= ∅ | Association, Context
Association ::= Variable : Type

Finally, it is interesting to observe that the addition of variables results in an interesting
correspondence: Terms in context are functions of their variables. More precisely, if there is
a method [[_]] that interprets type names τ as actual sets [[τ ]] and terms t : τ as values of
those sets [[t]] : [[τ ]], then a term in context x1 : τ1, . . ., xn : τn ` t : τ corresponds to
the function f : [[τ1]] × · · · × [[τn]] → [[τ ]]; f(x1, . . . , xn) = [[t]]. That is, terms-in-context model
parameterisation without speaking of sets and functions. (Conversely, functions A → B “are”
elements of B in a context A.) As mentioned in the introduction, we want to treat packages
as the central structure for compound computations. To this aim, we have the approximate4
slogan: Parameterised packages are terms in context.

4 Briefly, given a parameterised package in Agda (Section 2.4) module M (x : N) where y : N; y = 3 + x
we may form the term in context x : N ` y : N = 3 + x (Section 2.3.3) and there is a clear converse
construction. Next, if we place a ‘λ’ in front of that context, we get a function, and so parameterised
packages are functions.

CHAPTER 2. PACKAGES AND THEIR PARTS



2.2. SIGNATURES 25

6 A signature is also known as a
vocabulary.

Unary signatures are those with
only one source sort for each
function symbol —i.e., the length of
src f is always 1— and so are just
graphs. Hence, signatures
generalise graphical sketches.

The slogan Signatures ≈ Graphs
is captured by the following
correspondence, (re)interpretation
of signature components:
� Sorts ≈ “dots on a page”;

Vertices

� Function symbols ≈ “lines
between the dots”; Edges

[21] B. Jacobs. Categorical Logic and
Type Theory. Studies in Logic and the
Foundations of Mathematics 141. Am-
sterdam: North Holland, 1999

[22] S. Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, eds. Handbook
of Logic in Computer Science: Volume
5. Algebraic and Logical Structures.
Oxford University Press, Jan. 2001.
doi: 10.1093/oso/9780198537816.001.
0001
5 Sometimes signatures are presented
with dedicated sets of ‘function sym-
bols’ and ‘predicate, relation, sym-
bols’. The chosen presentation avoids
such a route since we want to use
Agda, which does not distinguish be-
tween the two. Indeed, for us, there
are no predicate symbols nor function
symbols, only symbols and there are no
proof terms, only terms. We may sim-
ulate predicate symbols by declaring
that a sort, say, ‘B’ in S models the
Booleans, the truth-values —then, for
instance, a ‘proof term’ is a term of
type B.
6 We write List X for the type of lists
with values from X. The empty list is
written [] and [x1, x2, . . ., xn] de-
notes the list of n elements xi from X;
one says n is the length of the list.

2.2. Signatures

The languages of the previous section can be organised into signa-
tures, which define interfaces in computing since they consist of the
names of the types of data as well as the names of operations on the
types —there are only symbolic names, not implementations. The
purpose of this section is to organise the ideas presented in the previ-
ous section —shown again in the figure below— in a refinement-style
so that the resulting formal definition permits the presentation of
packages given in Section 2.1 above.

Signatures
(Packages) Types Terms Type

Variables Presentations

The arrows “ X −→ Y ” in the above diagram may be read as “X
gives rise to an issue involving Y”. The purpose of this figure is to
sketch out the intended transitions from signatures to types, and,
eventually, to presentations; then to an improved definition of (gen-
eralised) signatures which may be used as the formal definition of a
package.

2.2.1. Typed terms in arbitrary signatures

A signature6 [21, 22] is a tuple (S, F , src, tgt) consisting of

� a set S of sorts —the names of types—,

� a set F of (function) symbols,5 and

� two mappings src : F → ListS and tgt : F → S that
associate a list6 of source sorts and a target sort with a given
function symbol.

Typing the symbols of a signature as follows lets us treat signa-
tures as general forms of ‘type theories’ since we may speak of ‘typed
terms’.

f : s1 × · · · × sn → t ≡ src f = [s1, . . . , sn] ∧ tgt f = t
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7 These are also known as
expressions and (abstract syntax)
trees —[23]: The leaves of which
are labelled with variables (from V)
or constants (symbols f with
src f = []), and the internal nodes
are labelled with function symbols
(from F) of positive arity, with
outdegree equal to the arity of the
label. Hence, abstract syntax is
characterised algebraically
using signatures; moreover, every
context-free grammar gives a
canonical signatures —with
non-terminals as sorts and
constructors as function symbols—
but the converse is not true since
signatures may have infinitely many
sorts or symbols, and they have no
designated ‘start state’.

8 The second typing rule now
becomes an axiom rather than
inference rule: For any constant c
of type τ :

` c : τ
[Constant Type]

The typing context is empty since
the type of a constant is fixed, and
therefore independent of the
context in which it appears.
9 How do we write down the
required parts of a signature? It is
reasonable —‘brute force’— to
begin by presenting the required
components of a signature as
listings: The values of sets are
listed out, and the value of function
f at input x —f(x)— is shown in a
table at the intersection of the row
labelled f and the column labelled
x. Are there better approaches?
10 This is an approximation since
we have constrained the equality
construction, _≈_, to take only
numeric arguments; whereas the
original Freshmen allowed both
numbers and Booleans as
arguments to equality provided the
arguments have the same type. We
shall return to this issue later when
discussing type variables.

Moreover, we regain the typing judgements of the previous section
by introducing a grammar for terms. Given a set V of variables, we
may define terms7 with the following grammar.

Grammar for Arbitrary Terms

Term ::= x -- A variable; an element of V
| f t1 t2 . . . tn -- A function symbol f of F taking

-- n sorts where each ti is a Term

Signature Typing

Γ(x) = τ

Γ ` x : τ

Γ ` t1 : τn . . . Γ ` tn : τn f : τ1 × · · · × τn → τ

Γ ` f t1 t2 . . . tn : τ

As discussed in the previous section, variables are not necessary
and if they are not permitted, we omit the first clause of Term and
only use the second typing rule —we also drop the contexts since
there would be no variables for which variable-type associations must
be remembered. Without variables, the resulting terms are called
ground terms. Since terms are defined recursively (inductively) the
set of ground terms is non-empty precisely when at least one function
symbol c needs no arguments, in which case we say c is a constant
symbol and8 make the following abbreviation:

c : τ ≡ src c = [ ] ∧ tgt c = τ

Alternatively, the abbreviation τ1 × · · · × τn → τ is written as
just τ when n = 0.

2.2.2. Signature Presentation, Briefly

How do we actually present a signature?9

For instance, recall the Freshmen language, we can present an ap-
proximation10 of it as a signature by providing the necessary compo-
nents S, F , src , and tgt as follows —where, for brevity, we write
B and N instead of Boolean and Number.

S = {Number, Boolean}
F = {Zero, Succ, Plus, True, False, Equal}

op Zero Succ True False _+_ _≈_
src [] [N] [] [] [N, N] [N, N]
tgt N N B B N B
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11 After all, the previous section
sets up typed terms in any
signature. That is, replace src,
tgt in preference to _:_→_.

12 It is important to note that there
are three relations here with ‘:’ in
their name —_:Type, _:_→_, and
_:_ for constant-typing. These are
summarised explicitly at the start
of the next section.

This is however rather clumsy and not that clear: We may collapse
the src, tgt definitions into the _:_→_ relation defined above; i.e.,
replacing two definition declarations src Zero = [] ∧ tgt Zero =
Number by one definition declaration11 Zero : Number. However,
such a change would still leave function symbol names repeated twice:
Once in the definition of F and once in the definition of _:_→_;
the latter mentions all the names of F and so F may be inferred
from the typing relationships. We are now left with two kinds of
declarations: The sorts S and the typing declarations. However, the
set S only serves to declare its elements as sort symbols; if we use a
new relationship, say _: Type defined by τ : Type ≡ τ ∈ S, then
the sort symbols can also be introduced by seemingly similar ‘typing
declarations’. With this approach, Freshmen can be introduced more
naturally12 as follows.

Freshmen as a Generalised Signature

Number : Type
Boolean : Type

Zero : Number
Succ : Number → Number
_+_ : Number × Number → Number

True : Boolean
False : Boolean
_≈_ : Number × Number → Boolean

Notice, we started with two sets and two functions, i.e., signatures,
but the above is a sequence of name-type associations. Recall, that
the symbol Γ has consistently been used to denote such things. That
is, these ‘generalised’ signatures are contexts. We may thus define
packages to be contexts where later declared names may be typed
by earlier names; i.e., the types of later items may refer to the names
of earlier declared items.

2.2.3. A grammar for types

It is important to pause and realise that there are three relations with
‘:’ in their name —which may include spaces as part of their names.

1. Function symbol to sort adjacency : f : s1× · · · × sn → s abbre-
viates src f = [s1, . . . , sn] ∧ tgt f = s

2. Sort symbol membership: s : Type abbreviates s ∈ S

3. Pair formation within contexts Γ: x : t abbreviates (x, t)

Consequently, we have stumbled upon a grammar TYPE for types —
called the types for signature Σ over a collection of variable names
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13 Defined above by
c : τ ≡ src c = [] ∧ tgt c = τ .

14 A function is an association of ‘inputs’ to
unique ‘outputs’.

15 For now, we may summarise our
progress with the following figure.

Signatures
Names that act as

“types” and “functions”

Typing The “Γ ` t : τ ” relation

Contexts
Signatures presented
using typing relations

Packages
Contexts with later names
typed by earlier names

V.

Induced Grammar for Types

TYPE ::= Type -- An opaque symbol; “the type of types”
| τ -- τ is a sort symbol; a value of S
| x -- A variable; an element of V
| TYPE → TYPE -- _→_ and _×_ each take
| TYPE × TYPE -- two TYPE arguments
| 1

The type 1 is used for constants: With this grammar a constant
c : τ would have type c : 1 → τ . The symbol 1 is used simply
to indicate that the function symbol c takes no arguments. The
introduction of 1 saves us from having to account for the constant-
typing relationship13 as if it were a primitive predicate.

We may now form type expressions, terms, α → β and α × β but
there is no way for the type β to depend on the type α. In par-
ticular, recall that in Freshmen we wanted to have s ≈ t to be a
well-formed term of type Boolean provided s and t have the same
type, either Number or Boolean. That is, _≈_ wants to have both
Number× Number→ Boolean and Boolean× Boolean→ Boolean

as types —since it is reasonable to compare either numbers or truth
values for equality. But a function symbol can have only one type
—since src and tgt are (deterministic) functions14 . If we had ac-
cess to variables which stand-in for types, we could type equality as
α× α→ Boolean for any type α.

α : Type ` _ ≈ _ : α× α→ Boolean

Even though types constrain terms, there seems to be a subtle rep-
etition: The TYPE grammar resembles the Term grammar. In fact, if
we pretend Type, 1, _×_, _→_ are function symbols, then TYPE is
subsumed by Term. Hence, we may conflate the two into one decla-
ration to obtain dependently-typed terms —a concern which we will
return to at a later time15 .

2.3. Presentations of Signatures —Π and Σ

Since a signature’s types also have a grammar, viz TYPE, we can
present a signature in the natural style of “name : type-term” pairs.
That is, a signature may be presented as a context; i.e., sequence of
declarations δ1, δ2, . . ., δn such that each δi is of the form namei
: typei where namei are unique names but typei are terms from the
TYPE grammar. Conversely 16 such a presentation gives rise to a
unique signature (S,F , src , tgt ) where:
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16 Proof of the claim:
1. By induction on the number

n.

2. When n = 0, there are no
declarations and the outline
construction yields the fully
empty signature (∅, ∅, ∅, ∅).

3. When n ≥ 1, let δn be the
final declaration. Then, by
induction, the previous n - 1
declarations constitute a
signature (S′,F ′, src ′, tgt ′).
Decompose δn = (η : τ).
There are two cases to
consider.

a) τ = Type: Since we
assumed the names are
unique, we have η 6∈ S′
and so (S′ ∪
{n},F ′, src ′, tgt ′) is a
signature.

b) τ 6= Type: It must
thus be a construction
involving one of ‘→, ×,
1’; by definition of the
TYPE assuming no
variables. In any case,
we have a function
symbol. Since we
assumed the names are
unique, we have η 6∈ F ′
and so src ′, tgt ′ do
not assign any type to
η. Hence, we may
define src s to be
src ′s unless s = η in
which case we yield the
antecedent of τ if any,
or 1 otherwise.
Likewise, define tgt to
behave as tgt ′ except
for η in-which case
yield the consequent of
τ if any, or all of τ
otherwise.

17 Signatures are all syntax; so we are
interpreting contexts as a syntax for another
syntax (signatures).
18 Ignoring Smart and call, the
figure to the left yields the following
signature.
� S = {Location, Phone}

� F = {School, Street, TV}

� src f = [], for all f : F , and
� tgt f = Location, for all
f : F .

� S is all of the namei where typei is Type;

� F is the remaining namei symbols;

� src , tgt are defined by the following equations, where the right
side, involving _:_→_ and _:_, are given in the context of δi.

src f = [τ1, . . . , τn] ∧ tgt f = τ ≡ f : τ1 × · · · × τn → τ
src f = [] ∧ tgt f = τ ≡ f : τ

These equations ensure src , tgt are functions provided each
name occurs at most once as the name part of a declaration.

This is one of the first instances of a syntax-to-semantics relation-
ship: A context is a syntactic representation of a (gener-
alised) signature. 17 However, with a bit of experimentation one
quickly finds that the syntax is “too powerful”: There are contexts
that do not denote signatures. Consider the following grammar which
models ‘smart’ people and their phone numbers. Observe that the
‘smartness’ of a person varies according to their location; for exam-
ple, in, say, a school setting we have ‘book smart’ people whereas in
the city we have ‘street smart’ people and, say, in front of a television
we have ‘no smart’ people. Moreover, the function symbol call for
obtaining the phone number of a ‘smart person’ must necessarily have
a variable that accounts for how the smart type depends on location.
However, if variables are not permitted, then call cannot have a
type —which is unreasonable: We do not need arbitrary stand-ins,
but rather local pronouns, variables. It is a well-defined context, but
it does not denote a signature18 .

Calling-smart-people Context

Location : Type

School : Location
Street : Location
TV : Location

Smart : Location → Type

Phone : Type
call : Smart ` → Phone -- A variable?!

The first problem, the type of Smart, is easily rectified: We take
the sorts S to be all names τ1 from declarations τ1 : τ2 in the context
that produce a TYPE term; i.e., for which there exists a sub-context
Γ such that Γ ` τ2 : Type. Sorts now may vary or depend on other
sorts.
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7 Those familiar with set theory may
remark that dependent types are not
necessary in the presence of power sets:
Instead of a single name call, one uses
a (possibly infinite) family of names
call` for each possible name `. Even
though power sets are not present in
our setting, dependent types provide
a natural and elegant approach to in-
dexed types in lieu of an encoding in
terms of families of sets or operations.
Moreover, an encoding hides essential
features of an idea such as dual con-
cepts: Σ and Π are ‘adjoint functors’.
Even more surprising, working with Σ
and Π leads one to interpret “propo-
sitions as types” with predicate logic
quantifiers ∀/∃ encoded via dependent
types Π/Σ; whence the slogan:

“Programming ≈ Proving”

8 Motivating Σ!
9 The initiated may recognise this prob-
lem as identifying the relationship be-
tween slice categories C/A whose ob-
jects are A-indexed families and arrow
categories C→ whose objects are all
the A-indexed families for all possible
A. In particular, identifying the rela-
tionship between the categorial trans-
formations _/A and _→ —for which
there is a non-full inclusion from the
former to the latter, which we call “Σ-
padding” since

Obj C/A ∼= ΣB • (B −→C A)

Obj C→ ∼= ΣA • ΣB • (B −→C A)

10 The Σ-types denote disjoint unions
and are sometimes written as

∐
—the

‘dual’ symbol to Π.

2.3.1. Motivating the need for Π and Σ

The second problem, the type of call, requires the introduction of a
new7 type operation. The operation Π_:_ • _ will permit us to type
function symbols that have variables in their types even when there
is no variable collection V.

Dependent Function Type

Π a : A • B a
≡ “Values of type B a, for each value a of type A”

An element of Π a : A • B a is a function f which assigns
to each a : A an element of B a. Such methods f are choice
functions: For every a, there is a collection B a, and f a picks
out a particular b in a’s associated collection.

The values of function types are expressed as λ x : τ • t;
this denotes the function that takes input x : τ and yields
output t. One then writes f e, or f(e), to denote the appli-
cation of the function f on input term e.

The type of call is now Π ` : Location • (Smart ` → Phone).
That is, given any location `, call ` specialises to a function symbol
of type Smart ` → Phone, then given any “smart person s in loca-
tion `”, call ` s would be their phone number. Moreover, if s is a
street-smart person then call School s is ill-typed : The type of s
must be Smart School not Smart Street. Hence, later inputs may
be constrained by earlier inputs. This is a new feature that simple
signatures did not have.

Before extending the previous definition of formal signatures, there
is a practical8 subtlety to consider. Suppose we want to talk about
smart people regardless of their location, how would you express such
a type? The type of call : (Π l : Location • Smart l → Phone)
reads: After picking a particular location `, you may get the phone
numbers of the smart people at that location. More specifically, Smart
` is the type of smart people at a particular location `. Since, in
this case, we do not care about locations, we would like to simply
pick a person who is located somewhere. The ability to “bundle
away” a varying feature of a type, instead of fixing it at a particular
value, is known as the (un)bundling problem9 . It is addressed
by introducing a new10 type operator Σ_:_ • _ —the symbol ‘Σ’ is
conventionally used both for the name of signatures and for this new
type operator.
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19 Since Π/Σ are the varying
generalisations of →/×, sometimes
Π/Σ are written as (a : A)→ B a
and (a : A)×B a, respectively.

Difference between Π and Σ

Π ` : Location • Smart ` “Pick a location, then pick a person”
Σ ` : Location • Smart ` “Pick a person, who is located somewhere”

More generally,

Π a : A • B a “Pick a value a : A, to get B a values”
Σ a : A • B a “Pick a value b : B a, which is tagged by some a : A”

Dependent Product Type

Σ a : A • B a
≡ “Pairs (a, b), with a : A and b is a value of type B a”

An element of Σ a : A • B a is a pair (a, b) consisting of
an element a : A along with an element b : B a. Such pairs
are tagged values: We have values b which are ‘tagged’ by the
collection-index a with which they are associated.

Thinking of type families B : A → Type as predicates or
constraints, or interfaces, then one may think of B a as the
collection of proofs of the proposition B a, or as a witness to
the constraint, or as an implementation to the interface. As
such, Σ-types Σ a : A • B a are sometimes denoted using
set notation {a : A | B a} (‘refinement types’) and using
logical notation ∃a : A • B a .

The values of product types are expressed as (x , w); this
denotes a pair of items where the second may depend on the
first. One then writes let (x, w) := β in e to ‘unpack’ the
pair value β as the pair (x, w) for use in term e.

Old ideas as abbreviations: The type operator _→_ did not
accommodate dependence but Π does; indeed if B does not depend
on values of type A, then Πa : A • B is just A→ B. Likewise19 , Σ
generalises _×_. That is, provided B is a type that does not vary:

A→ B ≡ Πx : A • B
A×B ≡ Σx : A • B
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2.3.2. Examples: Π/Σ or →/×

Before returning to the task of defining signatures, let us present a number of examples to
showcase the differences between dependent and non-dependent types.

Example 1: People and their birthdays

Let Birthday : Weekday→ Type denote the collection of all people who have a birthday
on a given weekday. One says, Birthday is the collection of all people, indexed by their
birth day of the week. Moreover, let People denote the collection of all people in the
world.

Π d : Weekday • Birthday d is the type of functions that given any weekday d,
yield a person whose birthday is on that weekday.

Example functions in this type are f and g
below. . .

f Monday = Jim
f Tuesday = Alice

g Monday = Mark
g Tuesday = Alice

. . . provided we live in a tiny world consist-
ing of three people and only two weekdays.

Person Birthday
Jim Monday
Alice Tuesday
Mark Monday

In contrast, Weekday→ People is the collection of functions associating people to week-
days —no constraints whatsoever. E.g., f d = Jim is the function that associates Jim
to every weekday d.

Σ d : Weekday • Birthday d is the type of pairs (d, p) of a weekday d and a person
whose birthday is that weekday.

Below are two values of this type (X) and a non-value (×). The third one is a pair (d, p)
where d is the weekday Tuesday and so the p must be some person born on that day,
and Mark is not such a person in our tiny world.

X (Monday, Jim)
X (Tuesday, Alice)
× (Tuesday, Mark)

In contrast, Weekday × People is the collection of pairs (w, p) of weekdays and people
—no constraints whatsoever. E.g., (Tuesday, Mark) is a valid such value.
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Example 2: English words and their lengths

Let English=n denote the collection of all English words that have exactly n letters; let
English denote all English words.

Πn : N • English=n is the type of functions that given a length n, yield a word
of that length.

Below is part of a such a function f.

f 0 = "" -- The empty word
f 1 = "a" -- The indefinite article
f 2 = "to"
f 3 = "the"
f 4 = "more"
· · ·

In contrast, an f : N→ English is just a list of English words with the i -th element in
the list being f i.

Σn : N • English=n is the type of values (n,w) where n is a number and w is
an English word of that length.

For instance, (5, "hello") is an example of such a value; whereas (2, "height") is
not such a value —since the length of "height" is not 2.

In contrast, N× English is any number-word pair, such as (12, "hi").

Notice that dependent types may encode properties of values.
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Example 3: “All errors are type errors”

Suppose get xs i is the i -th element in a list xs = [x0, x1, . . ., xn], what is the
type of such a method get?

Using get : Lists → N → Value will allow us to write get [x1, x2] 44 which
makes no sense: There is no 44-th element in that 2-element list! Hence, the get opera-
tion must constrain its numeric argument to be at most the length of its list argument.
That is, get : (Π (xs : Lists) • N< (length xs) → Value) where N< n is the
collection of numbers less than n. Now the previous call, get [x1, x2] 44 does not
need to make sense since it is ill-typed : The second argument does not match the re-
quired constraining type.

In fact, when we speak of lists we implicitly have a notion of the kind of value type they
contain. As such, we should write List X for the type of lists with elements drawn from
type X. Then what is the type of List? It is simply Type → Type. With this form, get
has the type Π X : Type • Π xs : List X • N< (length xs) → X.

Interestingly, lists of a particular length are known as vectors. The type of which is
denoted Vec X n; this is a type that is indexed by both another type X and an expression
n. Of course Vec : Type → N → Type and, with vectors, get may be typed
Π X : Type • Π n : N • Vec X n → N< n → X; in particular notice that the ex-
ternal computation length xs in the previous typing of get is replaced by the intrinsic
index n; that is, dependent types allow us to encode properties of elements at
the type level!

Proof Sketch

Suppose we want to avoid the erroneous situation E which can be expressed in higher
order logic. Then we can type our program so that its output type is a dependent
product Σ o : O • ¬E, involving the intended output type O and a proof obligation
—i.e., a value, witnessing the impossibility of E.
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20 The subscript is omitted when there is no
ambiguity.
21 Any collection, possibly generated by a
grammar.
22 It serves to provide a uniform
way to identify ‘types’ —uniform in
that it mirrors the way values are
typed. Otherwise we would need a
dedicated predicate, such as _`_
:Type from the previous section. It
answers the question “Some terms
are types, how do we find them?”
23 A variable is a name x of U for
which Γ ` x : τ can only happen
when Γ contains the association of
x to τ ; i.e., a variable is a name
about which information is known
only when the information is
hypothesised. A non-variable is
known as a value or well-defined
name. If Γ ` t : τ and Γ ` τ :
Type we refer to t as an
expression or term, to τ as a
type, and to Type as a kind. More
accurately, when Γ is a minimal
context such that Γ ` τ : Type
then we say τ is a type precisely
when Γ is empty, and otherwise
speak of a type construction;
moreover, if Γ associates variables
to terms besides Type, then we
speak of a dependently-typed
construction —e.g., Π and Σ.
This is important enough that it
occurs in the main text and in the
margin.
24 An example is shown in the next section!
25 As done before, the first clause of
this grammar is an invisible
constructor injecting names of U
into the set of terms.
26 Since this example’s typing
relation is inductively defined, such
a supposition is absurd.

2.3.3. Defining Generalised Signatures

Anyhow, back to the task at hand —formally defining signatures
(packages).

For any set of ‘names’ U , suppose20 TermU is a set of ‘terms’21 .
Moreover, suppose: (1) Every name is a term; i.e., U ⊆ TermU .
(2) There is a dedicated22 name Type. (3) TermU is endowed with
a “typing judgement relation _ ` _ : _”; i.e., a ternary predicate on
‘contexts’-‘terms’-‘types’— a ‘context’ is a list of name-to-term pairs
and a ‘type’ τ is any term for which there is some context Γ and term
t such that Γ ` t : τ . We refer23 to such triples (U ,TermU ,_`_ :_)
as generalised type theories24 (GTT).

GTTs allow us to speak of arbitrary typed expressions and vary-
ing degrees of actual typing. For instance, as previously discussed,
every signature gives rise to a typing relation that ignores any pres-
ence of variables. However, GTTs are strictly more powerful than
classical signatures since they allow not only nullary types (primi-
tive sorts), but also type constructors and dependent-types: When
Γ is a minimal context such that Γ ` τ : Type then we say τ is a
(nullary) type precisely when Γ is empty, and otherwise speak of
a type constructor, construction; moreover, if Γ associates vari-
ables to terms besides Type, then we speak of a dependently-typed
construction.

For instance, let U = {A} and let Term be the set generated by the
following grammar25 .

Term grammar for an example GTT

Term ::= U | N | Vec Term Term

Finally, we may take the typing relation to be generated by two
clauses, for any context Γ: (1) Γ ` N : Type and (2) Γ, τ : Type,
n : N ` Vec τ n : Type. If we take Γ to be the empty context, we
find that N is a (nullary) type, whereas Vec τ n is a type construc-
tion —in fact, a dependent type, since the minimal context required
to type it associates the variable n to the non-Type term N. More-
over, the typing relation does not associate a type with any names
(variables) of U , but26 under the supposition that the variable name
A were typed Type, and n is typed N, then Vec A n would be a type.

Informally, in our exploratory investigation into a convenient pre-
sentation of signatures, we were inexorably led to having later de-
clared types depend on earlier types. Likewise, the previous GTT
example could be rendered as follows:
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27 When n = 0, we have declarations η : Type
and so typing judgements Γ ` η : Type.

28 It can’t vary much if we use all ligatures!

29 Alternatively, we have a triple
(B, type , definition ) where B ⊆ U ,
type : B → Context× TermU , and
definition : B → TermU is a partial
function. Then one sets B = {βi}i
and (Γi, τ i) = typeβi and
δi = definitionβi if defined or ‘-’
otherwise.

We interpret Type as the type of all
types; whereas the βi let us suppose
a collection of names for either
types/sorts or function symbols,
and they may be aliases to existing
terms δi.
11 To allow subtyping, inclusion instead
of equality would be required.
30 We are now overloading the
existing colon ‘:’ relation to be part
of a mixfix name, _ : _→ _ = _
to denote tuples. The use of
contexts this way occurs later as
telescopes when we get to Agda.
Another reasonable notation would
be Γi ` βi : τ i = δi, overloading the
judgement relationship name.

Example: An entire GTT viz a single context

N : Type
Vec : Type → N → Type

We regain a canonical GTT from such a presentation as follows:
(0) The name set U is the countably infinite set of strings formed from
all possible non-whitespace written ligatures, which includes the set
of all names preceding the first ‘:’ in each line of the presentation.
The set TermU is defined inductively by the next two clauses. (1) All
names are included in the set of terms TermU . (2) Names for which
the right side of the ‘:’ contains n occurances of the ‘→’ symbol
are constructors that (inductively) consume n arguments of the term
set being defined. (3) Finally, the typing relation _`_:_ is defined
inductively with clauses

Γ, t1 : τ1, t2 : τ2, . . ., tn : τn ` η t1 t2 . . . tn : Type

for every declaration27 η : τ1 → τ2 → · · · → τn → Type.

That we are able to reconcile our presentation language with a
sound formalism is promising. However, as it stands, our GTT ex-
ample has Vec built-in, statically, and the only thing that can vary
—with respect to that example— is the collection of variables28 . It
would be nice if we had a way to append GTTs with extra structure
as we see fit; e.g., to dynamically declare names to be new types or
type constructions or members of a type. Such ‘dynamically extend-
able GTT-like structures’ are what we have been calling generalised
signatures.

A generalised signature, with respect to a chosen GTT
(U ,TermU ,_`_ :_), is a set of triples29 (βi,Γi, τ i, δi) where the βi are
unique names drawn from U , the Γi are name-to-term associations,
the τ i are terms, and the δi are either terms or the special symbol
‘-’. One then extends the underlying typing judgement by the rules

Γi ` βi : τ i
, and then ensures the resulting system is coherent :

1. The claimed types are recognised by the theory as types: Γi `
τ i : Type for all i;

2. Definitions match types: Γi ` δi : τ i for all i;

3. Types are unique; i.e., whenever Γ ` t : τ and Γ ` t : τ ′ then11
τ ≡ τ ′ —we will return to propositional equality in a later
section.

Due to the latter two coherence conditions, the tuples (βi,Γi, τ i, δi)
are presented30 as βi : Γi → τ i = δi when δi is not the special symbol
‘-’ and otherwise presented as βi : Γi → τ i.
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tuples That is, pit : (B : Type)→ B and B : Type.

31 In the next example, MLTT,
declarations of functions
name = (λ x : τ • e) are
instead simplified to name x = e .
32 Only a portion is shown since we will cover the
omitted features in the section 2.4, using Agda.
33 On which Agda is based.

[22] S. Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, eds. Handbook
of Logic in Computer Science: Volume
5. Algebraic and Logical Structures.
Oxford University Press, Jan. 2001.
doi: 10.1093/oso/9780198537816.001.
0001
[24] Roland Carl Backhouse and Paul
Chisholm. “Do-It-Yourself Type The-
ory”. In: Formal Aspects Comput. 1.1
(1989), pp. 19–84. doi: 10 . 1007 /
BF01887198
34

� U and Type together form
the “sort structure”

� Π, λ, and (the invisible)
application form the
“functional structure”

� Σ, let, and tupling form the
“record/packaging structure”

Recall: If t : τ and τ : Type we
refer to t as an expression, to τ as
a type, and to Type as a kind.
35 There are numerous other useful rules, which
we have omitted for brevity.
36 The Variables rule is also
known as Assumption or
Reflexivity and may be rendered
as follows.

x1 : τ1, . . . , xn : τn ` xi : τ i
[Variables]

37 The weakening rule is helpful for ignoring
“unnecessary” assumptions.

For instance, continuing with the previous GTT example, we can
form a generalised signature with the twotuples B : Type ` pit : B
and ` B : Type . Notice that the formal tuples are not as economical
as the sequential line-by-line presentation, due to the repetition of
the newly minted value B : Type. Moreover, note that B is a value
in the second tuple —since, by definition, the name B is typeable—
; however, if we omit the second clause, then B is, by definition, a
variable and we have declared pit to be a polymorphic value of any
given type.

In summary, a generalised signature extends a generalised type the-
ory by declaring some names to be values (such as type construc-
tions) and possibly outright defining them explicitly. Crucially, a gen-
eralised signature may be presented as a sequence of declarations
d1, . . . , dn where each di is of the form “name : term = term” where
the “= term” portion is optional and the names are unique. When
presented with multiple lines, we replace commas by newlines, and
split “name : type = definition” into two lines: The first being
“name : type” and the second31 , if any, being “name = definition”.

2.3.4. MLTT: An example generalised type theory

A portion 32 of Martin-Löf Type Theory (MLTT) 33 [22, 24] is
presented as the GTT having the terms generated inductively by the
grammar and rules below —for any set of names U .34

Generalised Terms

Term
::= x -- A “variable, name”; a value of U
| Type -- The type of types
-- For previously constructed types τ and τ',
-- previously constructed terms ti,
-- and variable name x:

| (Π x : τ • τ') | (λ x : τ • t) | t1 t2
| (Σ x : τ • τ') | let (t1, t2) := t3 in t4 | (t1, t2)

The rules35 below classify the well-formed generalised terms.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First are rules about contexts in general. For instance, the second
rule36 says if Γ associates x to τ , then indeed it does so. The third
rule37 introduces new names into a context.

Γ ` Type : Type
[Type-in-Type]

Γ(x) = τ

Γ ` x : τ
[Variables]
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38 The notation E[x := F ] means
“replace every free occurrence of the
name x within term E by the term
F .” This ‘find-and-replace’
operation is formally known as
textual substitution.

39 Just as Σ is the dual to Π, in
some suitable sense, so too the
eliminator let is dual to the
constructor lambda λ.

40 A GTT is a core theory that one builds on to
solve interesting problems!

Γ ` t : τ x is not a name in Γ Γ ` α : Type

Γ, x : α ` t : τ
[Weakening]

Next38 are the rules for dependent functions.

Γ, x : τ ` τ ′ : Type

Γ ` (Πx : τ • τ ′) : Type
[Π-Formation]

Γ, x : τ ` t : τ ′

Γ ` (λx : τ • t) : (Πx : τ • τ ′)
[Π-Introduction]

Γ ` β : (Πx : τ • τ ′) Γ ` t : τ

Γ ` β t : τ ′[x := t]
[Π-Elimination]

Then39 the rules for dependent pairs.

Γ, x : τ ` τ ′ : Type

Γ ` (Σx : τ • τ ′) : Type
[Σ-Formation]

Γ ` e : τ Γ ` t : τ ′[x := e]

Γ ` (e, t) : (Σx : τ • τ ′)
[Σ-Introduction]

Γ ` β : (Σx : τ • τ ′) Γ, x : τ, t : τ ′ ` γ : τ ′′

Γ ` let (x, t) := β in γ : τ ′′
[Σ-Elimination]

Finally, provided B is a type that does not vary; i.e., the variable
x is not free in B,

Γ ` t : A×B
Γ ` t : (Σx : A • B)

[Abbreviation]

Γ ` t : A→ B

Γ ` t : (Πx : A • B)
[Abbreviation]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The rules for Π and Σ show that they are families of types ‘indexed’
by the first type. The rules only allow the construction of types and
variable values, so to construct values of types we will need some
starting base types, whence the need40 for signatures.
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Π and Σ together allow the meta-language to be expressed in the object-
language

Recall that a phrase “Γ ` t : τ ” denotes a property that we check using day-to-day
mathematical logic in conjunction with the provided rules for it. In turn, the property
talks about terms t and τ which are related provided assumptions Γ are true. In
particular, contexts and the entailment relation are not expressible as terms of the
object language; i.e., they cannot appear in the t nor the τ positions . . . that is, until
now.

Π types internalise contexts

Contextual information is ‘absorbed’ as a λ-term; that is,
x1 : τ1, . . . , xn : τn ` t : τ is essentially
` (λx1 : τ1 • · · · • λxn : τn • t) : (Πx1 : τ1 • · · · • Πxn : τn • τ).
Recall that initially we remarked that terms-in-context are essentially functions pro-
vided we have some form of semantics operation [[_]]. However, in the presence of
Π types, terms-in-context correspond to functional terms in the empty context. The
Π-Introduction rule “explains away” the new λ-terms using the old familiar notion of
contexts.

Σ types internalise pairing contexts

Multiple contexts are ‘fused’ as a Σ-type term; that is, multiple premises in a judgement
rule can be replaced by a single premise by repeatedly using Σ-Formation.

Crucially, generalised signatures may be presented as a sequence of “symbol : type” pairs
where the symbols are unique names and each type is a generalised term. Below is an example
similar to the calling-smart-people example discussed previously. In this example, A denotes
a collection that each member a : A of which determines a collection B a which each have
a ‘selected point’ it a : B a. More concretely, thinking of A as the countries in the world
from which B are the households in each country, then it selects a representative member of a
household B a for each country a : A.

Pointed Families

A : Type
B : A → Type
it : Π a : A • B a

This is a generalised signature within the
above GTT.

Since the names are completely new and there are unique declarations for each name, we have
unique types; moreover since there are no definitions, and so there is only one condition to check
in order to satisfy the required coherency constraint on generalised signatures. Namely, there
the claimed types are actually recognised as types by the underlying theory after we extend the
typing judgement with these new relationships; i.e., we need to show:

1. ` Type : Type —since Γ1 is the empty context and τ1 = Type.
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2. ` (A→ Type) : Type —since Γ2 is the empty context.

3. ` (Πa : A • B a) : Type

The first is just the Type-in-Type rule, the second is a mixture of the Abbreviation and Π-
Formation rules; the third one is the most involved, so we verify it as an example derivation.
(We abbreviate Declaration, Abbreviation, Weakening by Decl, Abv, Weak, respectively. Inci-
dentally, this practical issue is why proof trees are seldom used for “real” work; instead one uses
a composition of constructors of an algebraic data type —to be fleshed out later.)

` B : A→ Type
[Decl]

a : A ` B : A→ Type
[Weak]

a : A ` B : (Πa : A • Type)
[Abv]

a : A ` a : A
[Vars]

a : A ` B a : Type
[Π-Elim]

` (Πa : A • B a) : Type
[Π-Intro]

In summary, GTTs give us the base building blocks of names, terms, variables and typing
relationships. Using these we can tackle a specific problem using specific names, whence
Generalised Signatures.

Signatures are a staple of computing science since they formalise interfaces and generalise
graphs and type theories. Our generalised signatures have been formalised “after the fact” from
the creation of the prototype for packages —see Chapter 6. In the literature, our definition
of generalised signatures is essentially a streamlined presentation of Cartmell’s ‘generalised
algebraic theories’12,13 except that we do not allow arbitrary equational ‘axioms’ instead using
“name = term” rather than “term = term” axioms which serve as default implementations of
names. Support for default definitions is to place the prototype on a sound footing, but otherwise
we do not make much use of such a feature outside of that chapter.

Readers familiar with elementary computing may note that our contextual presentations,
when omitting types, are essentially “JSON objects”; i.e., sequences of key-value pairs
where the keys are operation names and the values are term descriptions, possibly the
“null” description “−”.

12 John Cartmell. “Generalised algebraic theories and contextual categories”. In: Ann. Pure Appl. Log. 32
(1986), pp. 209–243. doi: 10.1016/0168-0072(86)90053-9

13 Quoting Cartmell: Thus, a generalised algebraic theory consists of (i) a set of sorts, each with a specified
role either as a constant type or else as a variable type varying in some way, (ii) a set of operator symbols,
each one with its argument types and its value type specified (the value type may vary as the argument
varies), (iii) a set of axioms. Each axiom must be an identity between similar well-formed expressions,
either between terms of the same possibly varying type or else between type expressions.
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2.4. A Whirlwind Tour of Agda

We have introduced a number of concepts and it can be difficult to keep track of when relation-
ships Γ ` t : τ are in-fact derivable. The Agda14,15,16,17 programming language will provide us
with the expressivity of generalised signatures and it will keep track of contexts Γ for us. This
section recasts many ideas of the previous sections using Agda notation, and introduces some
new ideas. In particular, the ‘type of types’ Type is now cast as a hierarchy of types which can
contain types at a ‘smaller’ level: One writes Seti to denote the type of types at level i : N.
This is a technical subtlety and may be ignored; instead treating every occurrence of Seti as
an alias for Type.

Agda

data / W
(Grammars)

record / Σ
(Context)

module / Π
(Namespacing)

Organisation Commentary. Since Agda is a DTL,
it makes sense to begin with Π and DTs since one would
expect them to occur everywhere else in a DTL —the
motivation for things, such as Π, is in section 2.3. Af-
ter Π, only may reasonably wonder about Σ since their
close relationship was pointed out in section 2.3, Σ is
not next on the tour since Agda records are syntac-
tic sugar for data declarations having one constructor,
so we need to discuss data after Π. Okay, we show
‘data’ and make use of the DTs already introduced;
what’s next? We show a concrete example of an ADT,
namely ‘≡’ since it will be used later on in examples
in Chapter 7. Now that we’re comfy with ADTs, we
can go to ones with a single constructor, records. But
wait, Agda records behave like Agda modules, so let’s
talk about Agda modules first. After that, we can fi-
nally get to records (Σ-types) and we can do so very
briefly since their underlying module/ADT nature has
already been explained. Later, in Section 5.1, we show
the interdefinability of packaging notions using Agda’s
syntactic sugar.

14 James McKinna. “Why dependent types matter”. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January
11-13, 2006. 2006, p. 1. doi: 10.1145/1111037.1111038

15 Conor McBride. “Dependently typed functional programs and their proofs”. PhD thesis. University of
Edinburgh, UK, 2000. url: http://hdl.handle.net/1842/374

16 Ana Bove and Peter Dybjer. “Dependent Types at Work”. In: Language Engineering and Rigorous Software
Development, International LerNet ALFA Summer School 2008, Piriapolis, Uruguay, February 24 - March
1, 2008, Revised Tutorial Lectures. 2008, pp. 57–99. doi: 10.1007/978-3-642-03153-3_2

17 Philip Wadler and Wen Kokke. Programming Language Foundations in Agda. 2018. url: https://plfa.
github.io/ (visited on 10/12/2018)
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Unicode Notation

Unlike most languages, Agda not only allows arbitrary mixfix Unicode lexemes, identi-
fiers, but their use is encouraged by the community as a whole. Almost anything can be
a valid name; e.g., [] and _::_ to denote list constructors —underscores are used to indi-
cate argument positions. Hence it is important to be liberal with whitespace; e.g., e:τ is
a valid identifier, whereas e : τ declares term e to be of type τ . Agda’s Emacs interface
allows entering Unicode symbols in traditional LATEX-style; e.g., \McN, \_7, \::, \to
are replaced by N, 7, ::, →. Moreover, the Emacs interface allows programming by
gradual refinement of incomplete type-correct terms. One uses the “hole” marker ? as a
placeholder that is used to stepwise write a program.

2.4.1. Dependent Functions — Π-types

A Dependent Function Type has those functions whose result type depends on the value of the
argument. If B is a type depending on a type A, then (a : A) → B a is the type of functions
f mapping arguments a : A to values f a : B a. Vectors, matrices, sorted lists, and trees of a
particular height are all examples of dependent types. One also sees the notations
∀ (a : A) → B a and Π a : A • B a to denote dependent function types.

For example, the generic identity function takes as input a type X and returns as output a
function X → X. Here are a number of ways to write it in Agda.

The Identity Function

id0 : (X : Set) → X → X
id0 X x = x

id1 id2 id3 : (X : Set) → X → X

id1 X = λ x → x
id2 = λ X x → x
id3 = λ (X : Set) (x : X) → x

All these functions explicitly require the type X when we use them, which is unfortunate since
it can be inferred from the element x. Curly braces make an argument implicitly inferred and
so it may be omitted. E.g., the {X : Set} → · · · below lets us make a polymorphic function
since X can be inferred by inspecting the given arguments. This is akin to informally writing
idX versus id.
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Inferring Arguments...

id : {X : Set} → X → X
id x = x

sad : N
sad = id0 N 3

nice : N
nice = id 3

...and Explicitly Passsing Implicits

explicit : N
explicit = id {N} 3

explicit' : N
explicit' = id0 _ 3

.

Notice that we may provide an implicit argument explicitly by enclosing the value in braces
in its expected position. Values can also be inferred when the _ pattern is supplied in a value
position. Essentially wherever the typechecker can figure out a value —or a type—, we may use
_. In type declarations, we have a contracted form via ∀ —which is not recommended since
it slows down typechecking and, more importantly, types document our understanding and it’s
useful to have them explicitly.

In a type, (a : A) is called a telescope and they can be combined for convenience.

(a1 : A) → {a2 : A} → {z : _} → (b : B) → · · ·
≈ (a1 {a2} : A) {z : _} (b : B) → · · ·
≈ ∀ a1 {a2 z} b → · · ·

Agda supports the ∀ and the (a : A) → B a notations for dependent function types; the
following declaration allows us to use the Π notation.

Π Notation in Agda

Π: • : ∀ {a b} (A : Set a) (B : A → Set b) → Set _
Π: • A B = (x : A) → B x

infix -666 Π: •
syntax Π: • A (λ x → B) = Π x : A • B -- The ‘:’ is Ghost colon, \:

The “ syntax function args = new_notation ” clause treats occurrences of new_notation
as aliases for proper function calls f x1 x2 . . . xn. The infix declaration indicates how com-
plex expressions involving the new notation should be parsed; in this case, the new notation
binds less than any operator in Agda.

2.4.2. Dependent Datatypes — ADTs

Recall that grammars permit a method to discuss “possible scenarios”, such as a verb clause or a
noun clause; in programming, it is useful to be able to have ‘possible scenarios’ and then program
by considering each option. For instance, a natural number is either zero or the successor of
another number, and a door is either open, closed, or ajar to some degree.

CHAPTER 2. PACKAGES AND THEIR PARTS



2.4. A WHIRLWIND TOUR OF AGDA 44

Informal Grammar Notation

Door ::= Open | Closed | Ajar N

Agda Rendition of Grammars

data Door : Set where
Open : Door
Closed : Door
Ajar : N → Door

While the Agda form looks more verbose, it allows more possibilities that are difficult to
express in the informal notation —such as, having parameterised18 languages/types for which
the constructors make words belonging to a particular parameter only; the Vec example below
demonstrates this idea.

Languages, such as C, which do not support such an “algebraic” approach, force you, the user,
to actually choose a particular representation —even though, it does not matter, since we only
want a way to speak of “different cases, with additional information”. The above declaration
makes a new datatype with three different scenarios: The Door collection has the values Open,
Closed, and Ajar n where n is any number —so that Ajar 10 and Ajar 20 are both values of
Door.

Interpreting the Door Values as Options

-- Using Door to model getting values from a type X.
-- If the door is open, we get the “yes” value
-- If the door is closed, we get the “no” value
-- If the door is ajar to a degree n, obtain the “jump n” X value.
walk : {X : Type} (yes no : X) (jump : N → X) → Door → X
walk yes no jump Open = yes
walk yes no jump Closed = no
walk yes no jump (Ajar n) = jump n

What is a constructor? A grammar defines a language consisting of sentences built from
primitive words; a constructor is just a word and a word’s meaning is determined by how
it is used —c.f., walk above and the Vec construction below which gives us a way to talk
about lists. The important thing is that a grammar defines languages, via words, without
reference to meaning. Programmatically, constructors could be implemented as “(value position,
payload data)”; i.e., pairs (i, args) where i is the position of the constructor in the list of
constructors and args is a tuple values that it takes; for instance, Door’s constructors could be
18 With the “types as languages” view, one may treat a “parameterised type” as a “language with dialects”. For

instance, instead of a single language Arabic, one may have a family of languages Arabic ` that depend on a
location `. Then, some words/constructors may be accessible in any dialect `, whereas other words can only
be expressed in a particular dialect. More concretely, we may declare SalamunAlaykum : ∀ {`} → Arabic
` since the usual greeting “hello” (lit. “peace be upon you”) is understandable by all Arabic speakers, whereas
we may declare ShakoMako : Arabic Iraq since this question form “how are you” (lit. “what is your colour”)
is specific to the Iraqi Arabic dialect.

CHAPTER 2. PACKAGES AND THEIR PARTS



2.4. A WHIRLWIND TOUR OF AGDA 45

implemented as (0,()), (1, ()), (2, (n)) for Open, Closed, Ajar n where we use () to
denote “the empty tuple of arguments”. The purpose of such types is that we have a number of
distinct scenarios that may contain a ‘payload’ of additional information about the scenario; it
is preferable to have informative (typed) names such as Open instead of strange-looking pairs
(0, ()). In case it is not yet clear, unlike functions, a value construction such as Ajar 10
cannot be simplified any further; just as the pair value (2, 5) cannot be simplified any further.
Table 2.1 below showcases how many ideas arise from grammars.

Concept Formal Name Scenarios
“Two things” Σ, A × B, records One scenario with two payloads
“One from a union” Sums A + B, unions Two scenarios, each with one payload
“A sequence of things” Lists, Vectors, N Empty and non-empty scenarios
“Truth values” Booleans B Two scenarios with no payloads
“A pointer or reference” Maybe τ Two scenarios; successful or null
“Equality of two things” Propositional _≡_ One scenario; discussed later
“A convincing argument” Proof trees A scenario for each logical construct

Many useful ideas arise as grammars

Such “enumerated type with payloads” are also known as algebraic data types (ADTs).
They have as values Ci x1 x2 . . . xn, a constructor Ci with payload values xi. Functions are
then defined by ‘pattern matching’ on the possible ways to construct values; i.e., by consider-
ing all of the possible cases Ci —see walk above. In Agda, they are introduced with a data
declaration; an intricate example below defines the datatype of lists of a particular length.

Vectors —N-indexed Lists

data Vec {` : Level} (A : Set `) : N → Set ` where
[] : Vec A 0
_::_ : {n : N} → A → Vec A n → Vec A (1 + n)

Notice that, for a given type A, the type of Vec A is N → Set. This means that Vec A is a
family of types indexed by natural numbers: For each number n, we have a type Vec A n. One
says Vec is parameterised by A (and `), and indexed by n. They have different roles: A is the
type of elements in the vectors, whereas n determines the ‘shape’ —length— of the vectors and
so needs to be more ‘flexible’ than a parameter; in particular, the parameter values need to be
the same in all constructor result types.

Notice that the indices say that the only way to make an element of Vec A 0 is to use []
and the only way to make an element of Vec A (1 + n) is to use _::_. Whence, we can write
the following safe function since Vec A (1 + n) denotes non-empty lists and so the pattern []
is impossible.
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Safe Head

head : {A : Set} {n : N} → Vec A (1 + n) → A
head (x :: xs) = x

The ` argument means the Vec type operator is universe polymorphic: We can make vectors of,
say, numbers but also vectors of types. Levels are essentially natural numbers: We have lzero
and lsuc for making them, and _t_ for taking the maximum of two levels. There is no universe
of all universes: Setn has type Setn+1 for any n; however the type (n : Level) → Set n is
not itself typeable —i.e., is not in Setl for any l— and Agda errors, saying it is a value of Setω.

Functions are defined by pattern matching, and must cover all possible cases. Moreover, they
must be terminating and so recursive calls must be made on structurally smaller arguments;
e.g., xs is a sub-term of x :: xs below and catenation is defined recursively on the first argu-
ment. Firstly, we declare a precedence rule so we may omit parentheses in seemingly ambiguous
expressions.

Catenation is a ++−→+ Homomorphism

infixr 40 _++_

_++_ : {A : Set} {n m : N} → Vec A n → Vec A m → Vec A (n + m)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Notice that the type encodes a useful property: The length of the catenation is the sum
of the lengths of the arguments.

Extended Commentary on Proof Trees: In section 2.2, we discussed how terms and trees coincide, but
when focusing on proof trees the relationship gives us more. For instance, the introduction and elimination rules
of a type of trees correspond to the constructors and destructor of the type’s grammar (ADT).

Let me try to clarify what it means to say that “syntactic proof is an alternative to exhaustive case analysis”
(valuations).

Solutions to families of problems can be phrased using names that can be defined using sets and functions
between them; this is a denotational semantics: One solves a problem by looking up the definitions, denotations,
of the names. In contrast, using ADTs provides a proof system to a problem: To solve a problem, one merely
considers the “shape” of the problem to identify which rule (ADT constructor) to apply and continue this process
recursively. That is, ADT proof systems generally provide a guidance to finding solutions. E.g., a propositional
logic formula can be shown to be valid by showing every valuation (an assignment of values to variables) of its
variables results in true — i.e., one must produce a function that takes in an arbitrary valuation and returns a
proof of equality that the application of the valuation to the formula is true —; in contrast natural deduction
is a collection of rules and one proves a formula is valid by constructing a tree whose conclusion is that formula;
moreover, the shape of the formula usually determines (or, guides the construction of) the tree.

That is, ADTs give us a notion of proof that avoids checking all possible values for the variables. The ADT we
design usually has its constructors —i.e., proof rules— to be sensible to the kind of problems we’re interested in.
This property is usually built-into the datatype; it is known as soundness: The ADT only allows us to prove
(i.e., form things) sensible with our intended interpretation; i.e., provable things are true. The contrapositive —
viz non-true statements are not provable— allow us to stop searching for a proof if we can find a counterexample.
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The converse —viz true statements are provable; i.e., constructible via the ADT— is called completeness and
it is not as practical since one usually designs an ADT for a particular kind of problem —with a constrained
amount of operations— rather than all kind of problems. Moreover, even if a true statement is provable, it may
require an absurd amount of time to prove —e.g., the Ackermann function always terminates, and calling it on,
say, (4, 2) still has it terminating but long after I have died; or, more realistically, Agda will run out of resources
and crash. By the same reasoning, typechecking in a DTL involves performing arbitrary computations, such as
the Ackermann function, and so DTL type-checkers are not (practically) complete —however, in practice this is
not an issue.

More accurately, Agda’s ADTs are known as Generalised Algebraic DataTypes (GADTs) in
other settings —i.e., a GADT is an ADT with, not only parameters, but also indices. Indeed,
GADTs bring no extra power in the presence of dependent types; i.e., in a DTL, GADTs are
a convenient abbreviation for ADTs and a ‘typing’ function. For instance, the vectors GADT
above has its constructors indexed by their length, but we may split up the constructors and
the length into the two parts ωVec and τγρε below, then combine them together to regain (an
isomorphic copy of) the vectors datatype.

Starting with ‘untyped’ terms than ‘typing’ them afterwards

mutual

Vec′ = λ A n → Σ v : ωVec A • τγρε v ≡ n

data ωVec {` : Level} (A : Set) : Set where
ω[] : ωVec A
_ω::_ : {n : N} (x : A) (xs : Vec′ A n) → ωVec A

τγρε : {A : Set} → ωVec A → N
τγρε ω[] = 0
τγρε (_ω::_ {n} _ _) = suc n

The ‘≡’ is a particular GADT defined in the next sibling section; the only value of x ≡ y is refl
—it witnesses that x and y are actually the same thing after simplifying. The (formal Agda)
proof of Vec′ A n ∼= Vec A n offers little insight, so we omit it in-preference to showing the
general case (which is almost exactly the proof for this particular case).

“Bundling theorem for GADTs”: Every indexed type (GADT) is a ‘typed language’; i.e.,
for a parameterised and indexed languageT : ρ → ι → Set we can form an untyped language
ωT : ρ → Set and a (constant-time) typing function τγρε : ∀ {p : ρ} → ωT p → ι
such that ∀ {p : ρ} {i : ι} → T p i ∼= Σ t : ωT p • τγρε t ≡ i.

This claim can be proved by constructing ωT and τγρε mutually with the help of the alias
T′ = Σ t : ωT p • τγρε t ≡ i , which occurs in the theorem statement. (The def-
inition of T′ from T is known as “Σ-padding” and is discussed in Chapter 3.) We proceed,
constructively, as follows.

1. Construct ωT:

a) Look at the GADT definition of T.
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b) Drop all indices; i.e., “ data T params : indices → Set ` ”
becomes “ data T params : Set `, ”

c) In the constructors, for every recursive call to T, replace every textual occurrence of
T with T′; i.e., “ c : · · ·T p· · · → T q ” becomes “ c : · · ·T′ p· · · → T q, ”

d) Finally, prefix all constructors and the type name by the symbol ‘ω’.

2. Define the typing function τγρε : ∀ {p : ρ} → ωT p → ι by the clauses
τγρε (ωck argsk) = ik for each T-constructor ck : argsk → T pk ik; notice that
τγρε, by definition, is constant-time and makes no-recursive calls.

That is, the typing definition just returns the intended index for each constructor.

3. Next, the inverse functions witnessing the purported equivalence are defined with as many
clauses as there are T-constructors.

to : ∀ {p : ρ} {i : ι} → T p i → T′ p i
to (ck argsk) = ωck “map to argsk”, refl --- for each constructor ck

In this definition, refl is a sufficient proof, since, by construction, τγρε of ωck is exactly
the index of ck, which happens to be i.

from : ∀ {p : ρ} {i : ι} → T′ p i → T p i
from (ωck argsk, refl) = ck “map from argsk” --- for each constructor ωck

Pattern matching on (refl) the equality constraint within the T′ ensures that we have values
of the right index for T; conversely, to structurally prepends constructors with ‘ω’ and uses the
definition of τγρε to ensure that the required proofs are refl. Hence, these two are inverse.
More formally, using Agda’s rewrite utility to simplify goals according to given equality proofs:

to◦from : ∀ {p : ρ} {i : ι} (t : T′ p i) → to (from t) ≡ t
to◦from (ωck argsk, refl) rewrite to◦from argsk = refl
-- The ‘rewrite’ is if ck has recursive calls.

from◦to : ∀ {p : ρ} {i : ι} (t : T p i) → from (to t) ≡ t
from◦to (ck argsk) rewrite from◦to argsk = refl
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48 An equivalence relation _≈_
is a relationship that models
similarity, thereby generalising the
idea of equality. For _≈_ to be
called “similarity, equivalence”, it
should satisfy:

1. (Reflexivity) “Everything is
similar to itself”; i.e., x ≈ x
is true for all x

2. “Similarity is a mutual
relationship”

3. “Similarity is a transitive
relationship”

49 An informal code of conduct
among mathematicians is that
interesting properties should be
invariant under equivalence
—otherwise, they are ‘evil’
properties and should be used with
caution. That is, for any interesting
property P , one must have
P x = P y whenever x and y are
“the same” —whatever that means.
Working with equivalence-invariant
properties is tantamount to working
with an interface, a specfication,
rather than a particular
implementation.
50 Pedantically, 2 is not the same as 2 viz “2 =
2”, since the actual occurrences occupy different
physical locations in this sentence.

[30] Jaakko Hintikka and Merrill B.
Hintikka. “On Denoting what?” In:
The Logic of Epistemology and the
Epistemology of Logic: Selected Es-
says. Dordrecht: Springer Nether-
lands, 1989, pp. 165–181. isbn: 978-
94-009-2647-9. doi: 10.1007/978-94-
009-2647-9_11

[31] Gideon Makin. “Making sense
of ’on denoting’”. In: Synth. 102.3
(1995), pp. 383–412. doi: 10 . 1007/
BF01064122
[32] Bertrand Russell. “On Denoting”.
In: Mind XIV.4 (Jan. 1905), pp. 479–
493. issn: 0026-4423. doi: 10.1093/
mind/XIV.4.479

Dependent-types conflate different features of non-dependently-typed
languages.

2.4.3. ADT Example: Propositional Equality

In this section, we present a notion of equality as an algebraic data
type. Equality is a notoriously difficult concept, even posing it is
non-trivial: “When are two things equal?” sounds absurd, since the
question speaks about two things and two different things cannot be
the same one thing. Equality, whatever it means,48 is about ignoring
certain ‘uninteresting’ properties; 49 below is a short hierarchy of
‘sameness’ with examples on Natural numbers.

1. Syntactic equality: “l = r” is true whenever l and r are
literally the same string of symbols. E.g., 2 = 2, or
suc suc zero = suc suc zero .

This is sometimes known as intentional equality ; the equality
of two expressions is ‘built-in’ the expressions themselves.50

2. Definitional/judgemental equality: “l = r” is true when-
ever one looking-up definitions and applying them leads to syn-
tactic equality. E.g., suc zero + suc zero = suc suc zero;
i.e., 1 + 1 = 2.

Definitional equality is generally the form of equality taught
at schools: Two expressions are equal if they both simplify, as
much as possible, to the same thing. However, this approach —
of ‘=’ as an alias for a reflexive transitive reduction relation that
permits a notion of ‘simplification’ or ‘computation’— empha-
sises operational behaviour rather than properties of equality.

This is also known as “normal form equality”: One simplifies
the two expressions, using definitions, until the two are syntac-
tically indistinguishable. (The normal form of an expression
is the most direct way of writing it; i.e., it consists of only
constructors.) That is to say, definitional equality is the equiv-
alence closure of a reduction relation —namely, the evaluation
scheme of the programming language. In classical mathemat-
ics, this appears in the form of “semantic equality”: Two things
are equal when the values they denote coincide; e.g., “2 + 2”
and “4” are clearly different, the first consisting of 3 symbols
and the latter of 1 symbol, but after evaluation they denote the
same value and so are treated equal. This is sometimes known
as extensional equality ; [30, 31, 32] .

3. “≡” Propositional equality: “l = r” is true exactly when
one must perform some sort of case analysis of variables (i.e.,
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51 In classical maths, extensionality is equal to
equality: “ .= = =”.

[33] Anne Kaldewaij. Programming -
the derivation of algorithms. Prentice
Hall international series in computer
science. Prentice Hall, 1990. isbn:
978-0-13-204108-9
[34] Andreas Abel and Gabriel
Scherer. “On Irrelevance and Al-
gorithmic Equality in Predicative
Type Theory”. In: Log. Methods
Comput. Sci. 8.1 (2012). doi:
10.2168/LMCS-8(1:29)2012
52 HoTT’s univalence axiom, [35], says
“isomorphism is isomorphic to equality” (“∼= =
=”) i.e., if two types are essentially
indistinguishable (‘∼=’) then we might as well
treat them as indistinguishable (‘≡’); which is
what classical mathematicians do; compare with
function extensionality. HoTT’s univalence
axiom wonderfully induces the expected
definition of equality that one actually finds
useful; e.g., categories are equal when they are
equivalent.

[36] Andrej Bauer. “Five stages of ac-
cepting constructive mathematics”. In:
Bulletin of the American Mathemati-
cal Society (2016). doi: https://doi.
org/10.1090/bull/1556

induction) to arrive at a definitional equality.
E.g., suc m + suc zero = suc suc m.

In Agda, as shown below, the typing judgement refl : l ≡
r expresses that l and r as judgmentally (definitionaly) equal;
i.e., a particular term is what signifies the equality as defini-
tional. The equality that can be mentioned solely at the type
level, and so reasoned about, is propositional equality: Two ex-
pressions, l and r, are propositionally equal, ∀ {x} → l ≡ r,
exactly when any instantiation of the free variables, x, results
in definitionaly equal terms.

It is important to remember: “syntactic ⊆ definitional ⊆ propo-
sitional equality”. The next kind of equality below, is orthogo-
nal.

4. Setoids / groupoids / equivalence relations: “l ≈ r” is
proven using the assumption that _≈_ : τ → τ → Set is an
equivalence relation and any properties of the type τ .

For instance:

a) Extensionality: f
.
= g is proven for two functions by

showing that f x = g x for all appropriate arguments x.51
“Extensionality is essential for abstraction”; i.e., functions
are abstractions determined only by their input-output
relationships —this is not true in computing, where ef-
ficiency is important and one speaks of algorithmic com-
plexity. [33, 34]

b) Isomorphism: A ∼= B is proven by exhibiting a non-lossy
protocol between the two types A and B.52

Extended Commentary: Experience has shown that, in Agda at least,
the use of explicit equivalence relations is preferable to the use of propo-
sitional equality —i.e., _≡_ is generally too strong, coarse, and one must
generally use a finer equivalence relation. More generally, the use of se-
toids is the move from ‘global identity types’ (A, _≡_) to ‘locally-defined
identity types’ (A, _≈_), and more generally is the move from sets to
groupoids: Two things are ‘equal’ exactly when there is a (necessarily in-
vertible) morphism between them. Since Agda is constructive [36], its
setoids could just as well have been called groupoids.

As a middle-ground, the propositional equality datatype is defined
as follows. For a type A and an element x of A, we define the family
of types/proofs of “being equal to x” by declaring only one inhabitant
at index x.
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53 Any relation R that relates
things to themselves —such that
xRx for any x— must necessarily
contain the propositional equality
relation; i.e., _ ≡ _ ⊆ R.
module _ {X} (_R_ : X → X → Set)
where

R-contains-≡ : Set
R-contains-≡
= ∀ {x y} → x ≡ y → x R y

R-reflexive : Set
R-reflexive = ∀ {x} → x R x

lrr : R-reflexive
→ R-contains-≡

lrr reflr refl = reflr

lrr˘ : R-contains-≡
→ R-reflexive

lrr˘ go = go refl

“R is reflexive precively when it
contains _ ≡ _” follows from (lrr)
and (lrr˘), and is sometimes “the”
definition of reflexivity.
54 That is, if refl : x ≡ y, then,
we can apply the definition of cong,
to obtain refl : f x ≡ f y. That
is, cong refl normalises to refl;
whereas cong p cannot normalise
since the definition of cong requires
its argument to be the shape refl
before any normalisation can occur.
Hence, arbitrary propositional
equality proofs p : x ≡ y lead to
expression cong f p : f x ≡ f y
which can only simplify in the same
cases that allow p to simplify to
refl.

There’s only one constructor for
equalities, so isn’t every equality
proof just refl? ‘For the most
part’, yes —for more, see HoTT
[35]. However, an arbitrary term p
: l ≡ r is a witness that (1) both
computations l and r terminate,
and (2) they have the same normal
form; and the definition of cong
only works, computes, when we
actually have refl in hand, so the
issue becomes a matter of when can
reduction happen.

Propositional Equality

data _≡_ {A : Set} : A → A → Set
where

refl : {x : A} → x ≡ x

This states that refl {x} is a proof of l ≡ r whenever l and r
simplify, by definition chasing only, to x —i.e., both l and r have x
as their normal form. This definition makes it easy to prove Leibniz’s
substitutivity rule, “equals for equals”:

Transport along proofs

{- If l ≡ r and we have P l, then we also have P r too! -}
subst : {A : Set} {P : A → Set} {l r : A}

→ l ≡ r → P l → P r
subst refl it = it

subst˘ : ∀ {A : Set} {x y : A}
→ (∀ (P : A → Set) → P x → P y)
→ x ≡ y

subst˘ {A} {x} indistinguishable = indistinguishable (_≡_ x)
refl↪→

-- Alternativelly...
cong : {A B : Set} {l r : A} (f : A → B)

→ l ≡ r → f l ≡ f r
cong refl = refl

cong˘ : ∀ {A : Set} {x y : A}
→ (∀ {B : Set} (f : A → B) → f x ≡ f y)
→ x ≡ y

cong˘ indistinguishable = indistinguishable (λ a → a)

How does subst work? An element of l ≡ r must be of the form
refl {x} for some canonical form x; but if l and r are both x, then
P l and P r are the same type. Pattern matching on a proof of
l ≡ r gave us information about the rest of the program’s type. By
the same reasoning, we can prove that equality is the smallest possible
reflexive relation.53

The Leibniz rule —equals-for-equals: ∀ {x y} → x ≡ y → f x
≡ f y for any function f— is perhaps the most useful principle of
equality. In Agda, if we know x ≡ y by definitional (which in-
cludes syntactic) equality, then f x ≡ f y is true silently, auto-
matically : 54 Without ceremony, we can interchange one with the
other. However, if p : x ≡ y is a proof of a propositional equality,
then cong f p : f x ≡ f y ; i.e., we need to invoke the particular
proof p in order to obtain the new proof. Finally, for setoid equiv-
alence relations, one needs to prove the theorem f-cong : ∀ {x y}
→ x ≈ y → f x ≈ f y on a case-by-case basis, for each f one is
interested in —think ‘sets quotiented by an equivalence’. Definition-
ally equal terms can be interchanged anywhere, silently, and it is this
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55 This is the groupoids interpretation!
Moreover, whether we intepret the datatype as a
proposition (equality) or as a datastructure
(graph) is an example of the
propositions-as-types interpretation used in
DTLs.
56 A more general definition of
surjectivity can be seen in Baez ad
Shulman’s Lectures in n-categories
and Cohomology [37].

57 There are multiple, equivalent, definitions of
addition; but we actually have to write one down
in order to use it; and then this particular one is
given special status by the programming
language: The particular defining clauses are
automatically theorems of addition (having
zero-length proofs). More concretely, for our
example, 0 + n and n are indistinguishable to
Agda, and so we can freely use such an identity
law silently without mention; but the other
identity law n + 0 = n requires explicit
mention!. For instance, if xs : Vec A (0 + n)
then xs : Vec A n; but if xs : Vec A (n + 0)
then subst p _ : Vec A n where we must
ceremonially transport xs, ‘coerce’, along the
proof p : n + 0 ≡ n. This issue pops up in the
wild in useful, simple, programs such as the
catenation of vectors; try it!

property that makes them so remarkable.

Is the _≡_ datatype really equality? The name is definitely biased;
below we change the names.

Discrete graphs with only self-loops

data _−→_ {Node : Set} : Node → Node → Set
where

loop : {x : Node} → (x −→ x)

Instead of ‘≡’ we have the long arrow ‘−→’, instead of A we have
named the type parameter Node, and refl became loop. We may
interpret the given type Node as a bunch of dots on a sheet of paper
and a term a : x −→ y as an arc, arrow, from the dot named x to
the dot named y. Whether we use this graphical55 interpretation
or the equality one is up to us, the users: The datatype itself carries
no one, fixed, semantics. The change in perspective can offer great
dividends; for instance, specialising the notion of a surjective graph
homomorphism to this particular graph yields the observation that,
in general, injective means surjective on equations:56 For every proof
q : f x ≡ f y there is a proof p : x ≡ y such that
cong f p ≡ q.

As a slightly concrete example, if we define57addition on the natural
numbers inductively on the first argument —i.e., 0 + n = n and suc
m + n = suc (m + n)— then one can show that 0 is the left identity
of addition very quickly but to show that it is a right identity means
we need to perform case analysis (i.e., induction) in order to make
any progress (viz invoking the definition of +). We have two proofs
of equality but one has a shorter proof length than the other: 0 +
n ≡ n is refl immediately, whereas n + 0 ≡ n becomes refl after
performing n reduction steps to get into normal form.

In summary, one says l ≡ r is definitionally equal when both sides
are indistinguishable after all possible definitions in the terms l and r
have been used. In contrast, the equality is propositionally equal when
one must perform actual work, such as using inductive reasoning. In
general, if there are no variables in l ≡ r then we have definitional
equality —i.e., simplify as much as possible then compare— otherwise
we have propositional equality —real work to do. Below is an example
about the types of vectors.
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Examples of Propositional and Definitional Equality

definitional : ∀ {A} → Vec A 5 ≡ Vec A (2 + 3)
definitional = refl

propositional : ∀ {A m n} → Vec A (m + n) ≡ Vec A (n + m)
propositional v = subst +-sym v

-- where +-sym : ∀ {n m} → m + n ≡ n + m

That is, whenever one has a proof p : l ≡ r, if p is the refl con-
structor, then l and r are equal by definition chasing ; otherwise, they
require a ‘non-trivial’ proof and are thus propositionally equal . In
particular, to type check refl : f(x) = y for some function f, the
system must actually perform the computation f on input x then
check for syntactic equality against y. Hence, equalities may contain
non-trivial computational content and typechecking may involve non-
trivial computational effort; e.g., refl : 2100 ≡ 2100 takes some ‘time’
to typecheck.
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2.4.4. Modules —Namespace Management; ΠΣ-types

For now, Agda modules are not first-class19 constructs and essentially only serve to delimit
(possibly parameterised) namespaces, thereby avoiding name clashes —as such, there are only a
few associated keywords, which we show briefly in this section. The use of modules is exemplified
by the following snippets.

A Simple Module

module A where

N : Set
N = N

private
x : N
x = 3

y : N
y = x + 1

Using It

use0 : A.N
use0 = A.y

use1 : N
use1 = y

where open A

open A

use2 : N
use2 = y

Parameterised
Modules

module B
(x : N)

where
y : N
y = x + 1

Name = Function

exposed
: (x : N)
→ N

exposed = B.y

Using Them

use'0 : N
use'0 = B.y 3

module C = B 3

use : N
use = C.y

use'1 : N
use'1 = y

where
open B 3

When opening a module, we can control which names are brought into scope with the using,
hiding, and renaming keywords.

open M hiding (n0; . . .; nk) Essentially treat ni as private
open M using (n0; . . .; nk) Essentially treat only ni as public
open M renaming (n0 to m0; . . .; nk to mk) Use names mi instead of ni

Module combinators supported in the current implementation of Agda

All names in a module are public, unless declared private. Public names may be accessed
by qualification or by opening them locally or globally. Modules may be parameterised by
arbitrarily many values and types —but not by other modules.

Modules are essentially implemented as syntactic sugar: Their declarations are treated as
top-level functions that take the parameters of the module as extra arguments. In particular,
it may appear that module arguments are ‘shared’ among their declarations, but this is not so
19 Following common usage, we define a first-class citizen to be a citizen that is not treated differently by having

their rights reduced. In particular, first-class citizens may be serviced (‘treated as data’) by other citizens;
second-class citizens can only provide a service and do not themselves have the right to be serviced.
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—see the exposed function above.

Parameterised Agda modules are generalised signatures that have all their parameters first
then followed by only by named symbols that must have term definitions. Unlike generalised
signatures which do not possess a singular semantics, Agda modules are a pleasant way to write
ΠΣ-types —the parameters are captured by a Π type and the defined named are captured by
Σ-types as in “ Π parameters • Σ body ”.

2.4.5. Records — Σ-types

An Agda record type is presented like a generalised signature, except parameters may either
appear immediately after the record’s name declaration or may be declared with the field
keyword; other named symbols must have an accompanying term definition. Unlike generalised
signatures which do not possess a singular semantics, Agda records are essentially a pleasant
way to write Σ-types. The nature of records is summarised by the following equation.

record ≈ module + data with one constructor

The class of types along with a value
picked out

record PointedSet : Set1 where
constructor MkIt -- Optional
field

Carrier : Set
point : Carrier

-- It's like a module,
-- we can add definitions
blind : {A : Set}

→ A → Carrier
blind = λ a → point

Defining Instances

ex0 : PointedSet
ex0 = record { Carrier = N

; point = 3 }

ex1 : PointedSet
ex1 = MkIt N 3

open PointedSet

ex2 : PointedSet
Carrier ex2 = N
point ex2 = 3

Two tuples are the same when they have the same components, likewise a record is (exten-
sionaly) defined by its projections, whence co-patterns: The declarations
r = record {fi = di} and fi r = di, for field names fi, are the same; they define values of
record types. See ex2 above for such an example.

To allow projection of the fields from a record, each record type comes with a module of
the same name. This module is parameterised by an element of the record type and contains
projection functions for the fields.
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Simple Uses

use0 : N
use0 = PointedSet.point ex0

use1 : N
use1 = point

where open PointedSet ex0

open PointedSet

use2 : N
use2 = blind ex0 true

Pattern Matching on Records

use3 use4 : (P : PointedSet)
→ Carrier P

use3 record {Carrier = C
; point = x}

= x

use4 (MkIt C x)
= x

Records are data declarations whose one and only constructor is named
record {fi = _}, where the fi are the filed names; above we provided MkIt as an optional
alias. As such, above we could pattern match on records using either constructor name.

So much for records.20

20 Agda records are particular ADTs/data, which have been discussed in detail up to this point. They have
module-like behaviour, which has also been discussed, and so, reasonably, the discussion on records is terse.
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� Tedium is for machines; interesting
problems are for people. 	
0 This chapter lays out the
problems; there’s nothing “new”
here besides collecting existing
problems in DTLs and the current
ways they are handled by DTL
practitioners.

1 A magma (C, #) is a set C and a
binary operation _#_ : C → C → C
on it; a semigroup is a magma
whose operation is associative, ∀ x,
y, z • (x # y) # z = x # (y #
z); and a monoid is a semigroup
that has a point Id : C acting as
the identity of the binary operation:
∀ x • x # Id = x = Id # x. For
example, real numbers with
subtraction (R, -) are only a
magma whereas numbers with
addition (R, _+_, 0) form a
monoid. The canonical models of
magma, semigroup, and monoid are
trees (with branching), non-empty
lists (with catenation), and possibly
empty lists, respectively —these are
discussed again in Section 7.5.
2 Definition: A general, reusable
solution to a commonly occurring
problem.
3 Definition: A finite sequence of
instructions to be followed to
accomplish a goal.
4 All references to the Agda
Standard Library refer to the
current version 1.3. The library can
be accessed at https:
//github.com/agda/agda-stdlib.

3. Examples from the Wild

In this0 chapter, we motivate the problems —for which we will
find solutions for— by finding examples within public libraries of
code developed in dependently-typed languages. We will refer back
to these real-world examples later on when developing our frameworks
for reducing their tedium and size. The examples are extracted from
Agda libraries focused on mathematical domains, such as algebra and
category theory. It is not important to understand the application
domains, but how modules are organised and used. Encouraged by
program correctness activities, our focus will inexorably lead to em-
bedding program specifications at the type level, but we will see that
sometimes it is more pragmatic to relocate the specification to the
value level (Section 3.1); this then leads to choosing more apt names
(Section 3.2) and to mixing-in features to an existing module (Sec-
tions 3.1.3, 3.3, 3.4). To illustrate the core concepts, we will use the
algebraic structures Magma, Semigroup, and Monoid1 .

Incidentally, the common solutions to the problems presented may
be construed as design patterns for dependently-typed pro-
gramming. Design patterns 2 are algorithms 3 yearning to be
formalised. The power of the host language dictates whether design
patterns remain as informal directions to be implemented in an ad-
hoc basis then checked by other humans, or as a library methods that
are written once and may be freely applied by users. For instance,
the Agda Algebra.Morphism.Structures “library” 4 presents only
examples of the homomorphism design pattern —which shows how to
form operation-preserving functions for a few chosen algebraic struc-
tures. Examples, rather than a library method, is all that can be done
since the current implementation of Agda does not have the necessary
meta-programming utilities to construct new types in a practical way
—at least, not out of the box.
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In particular, this section is about
“how a user may wish things were bun-
dled” and a suggestion to “how a li-
brary designer should bundle data”.
1 A variation of this problem is dis-
cussed in section 2.3.
The purpose of this section is to
demonstrate the related, yet different,
ideas below.
(1) Isomorphism is not indistinguish-
able from equality.
(2) Propositional equality is not equal
to definitional equality.
(3) Equivalent presentations are not
equivalent in different, real usage sce-
narios.
The first two subsections here are con-
crete instances of the more general sit-
uation and readers familiar with DTLs
are encouraged to skip ahead to section
3.1.3.

Chapter Contents

3.1. Simplifying Programs by Exposing Invariants at the Type Level . . . . . . . . . 58
3.1.1. Avoiding “Out-of-bounds” Errors . . . . . . . . . . . . . . . . . . . . . . 58
3.1.2. “To Bundle or Not To Bundle”: Structure vs Predicate Style Presentations 61
3.1.3. From IsX to X —Packing away components . . . . . . . . . . . . . . . 64

3.2. Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.1. Renaming Problems from Agda’s Standard Library . . . . . . . . . . . . 69
3.2.2. Renaming Problems from the RATH-Agda Library . . . . . . . . . . . . 72
3.2.3. Renaming Problems from the Agda-categories Library . . . . . . . . . . 75

3.3. Redundancy, Derived Features, and Feature Exclusion . . . . . . . . . . . . . . 77
3.4. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5.1. Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5.2. One-Item Checklist for a Candidate Solution . . . . . . . . . . . . . . . 83

4. Contributions of the Thesis 84

3.1. Simplifying Programs by Exposing
Invariants at the Type Level

In this section, we want to discuss how “unbundled (possibly value-
parameterised) presentations” can be used to simplify programs and
statements about elements of shared types. We begin with a ubiqui-
tous problem1 that happens in practice: Given a list [x0, x1, . . .,
xn−1], how do we get the kth element of the list? Unless 0 ≤ k < n,
we will have an error. The issue is clearly at the ‘bounds’, 0 and n,
and so, for brevity, we focus on the problem of extracting the first
element of a list —i.e., the first bound. The resulting unbundling so-
lution has its own problems, so afterward, we consider how to phrase
composition of programs in general and abstract that to phrasing
distributivity laws. Finally, from the previous two discussions, we
conclude with a promising suggestion that may improve library de-
sign.

3.1.1. Avoiding “Out-of-bounds” Errors

Let us “see the problem” by writing a function head that gets the
first element of a list —a very useful and commonly used operation.

Lists as Algebraic Data Types

data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A

A list [x0, x1, . . ., xn−1] is composed by repeatedly prepend-
ing new elements to the front of existing lists, starting from an
empty list. That is, the informal notation [x0, x1, . . ., xn−1]
is represented formally as x0 :: (x1 :: (· · · :: (xn :: []))) using
a prepending constructor _::_ and an empty list constructor [].

CHAPTER 3. EXAMPLES FROM THE WILD



3.1. SIMPLIFYING PROGRAMS BY EXPOSING INVARIANTS
AT THE TYPE LEVEL 59

Trying to define the head function.

2 Leaving users the burden of ensur-
ing that any call head l never happens
with l = []! Otherwise, we need to
parameterise our function by a “default
value”.
3 Thereby having no empty types at
all —roughly put, this is what Haskell
does. Agda lets us do this with the
postulate keyword.

In this definition, we pattern match
on the possible ways to form a list —
namely, [] and _::_. In the first case,
we perform case analysis on the shape
of the proof of [] 6=[], but there is no
way to form such a proof and so we
have “defined” the first clause of head
using a definition by zero-cases on the
[] 6=[] proof. The ‘absurd pattern’
() indicates the impossibility of a con-
struction. The second clause is as be-
fore in the previous attempt to define
head. This approach to “padding” the
list type with auxiliary constraints af-
ter the fact is known as ‘Σ-padding’
and is discussed in Section 3.1.3.

Partially defined head

head : ∀ {A} → List A → A
head [] = {! !}
head (x :: xs) = x

Then, to define head l for any list l, we consider the possible
shapes of the variable list l. The two possible shapes are an empty
list [] and a prepending of an element x to another list xs. In the
second case, the the list has x as the first element and so we yield
that. Unfortunately, in the scenario of an empty list, there is no
first element to return! However, head is typed List A → A and so
it must somehow produce an A value from any given List A value.
In general, this is not possible: If A is an empty type, having no
values at all, then [] is the only possible list of A’s, and so head []
is a value of A, which contradicts the fact that A is empty. Hence,
either head remains a partially-defined2 function or one has to “add
fictitious elements to every type”3 such as undefinedA : A. However,
in a DTL, we can add the non-emptiness condition l 6= [] to the
type level and have it checked at compile-time by the machine rather
than by the user.

Non-emptiness Predicate

data _ 6=[] {A : Set} : List A → Set where
indeed : ∀ {x xs} → (x :: xs) 6=[]

We define the predicate l 6=[] as a data-type whose values witness
the truth of the statement “l is not an empty list”. As with head, it
suffices to consdier the possible shapes of l. When l is a non-empty
list x :: xs, then we shall include a constructor, call it indeed, whose
type is (x :: xs) 6=[]; i.e., indeed is a ‘proof’ that the predicate
holds for _::_ constructions. Since [] is an empty list, we do not
include any constructors of the type [] 6=[], since that would not
capture the non-emptiness predicate.

With the non-emptiness predicate/type, we can now form head
as a totally defined function.

Non-emptiness proviso at the type level —Using an auxilary
type

head : ∀ {A} → Σ l : List A • l 6=[] → A
head ([] , ())
head (x :: xs , indeed) = x

The need to introduce an auxiliary type was to “keep track” of the
fact that the given list’s length is not 0 and so it has an element to
extract. Indeed, some popular languages have list types that “know
their own length” but it is a value field of the type that is not ob-
servable at the type level. In a dependently-typed language, we can
form a type of lists that “document the length” of the list at the type
level —these are ‘vectors’.

Exposing Information At the Type Level

data Vec (A : Set) : N → Set where
[] : Vec A 0
_::_ : ∀ {n} → A → Vec A n → Vec A (suc n)
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4 The definition of this type, and the
subsequent head function, have been
discussed in Section 2.4.2, in the in-
troduction to dependently-typed pro-
gramming with Agda.

As usual, this function is defined on
the shape of its argument. Since its
argument is a value of Vec A (suc n),
only the prepending constructor _::_ of
the Vec type is possible, and so the
definition has only one clause; from
which we immediately extract an A-
value, namely x.

5 Formally, one could show, for in-
stance, that every list corresponds to
a vector, List X ∼= (Σ n : N • Vec
X n). Informally, any list x1 :: x2 ::
. . . :: xn :: [] can be treated as a vec-
tor (since we are using the same over-
loaded constructors for both types) of
length n; conversely, given a vector in
Vec X n, we “forget” the length to ob-
tain a list.
6 For example, to find how many ele-
ments are in a list, a function
length : ∀ {A} → List A → N
must “walk along each prepending con-
structor until it reaches the empty con-
structor” and so it requires as many
steps to compute as there are elements
in the list. As such, it is impossible to
write a function that requires a con-
stant amount of steps to obtain the
length of a list. In contrast, a func-
tion
length : ∀ {A n} → Vec A n → N
requires zero steps to compute its
result —namely, length {A} {n} l =
n— and so this function, for vectors, is
rather facetious.

Equivalent structures, but
different usability profiles.

Our type of vectors4 is defined intentionally using the same construc-
tor names as that of lists, which Agda allows. Notice that the first
constructor is declared to be a member of the type Vec A 0, whereas
the second declares x :: xs to be in Vec A (suc n) when xs is in
Vec A n, and so l : Vec A n implies that the length of l is n. In
particular, if l : Vec A (suc n) then l has a positive length and
so is non-empty; i.e., non-emptiness can be expressed directly in the
type of l.

Non-emptiness proviso at the type level

head' : ∀ {A n} → Vec A (suc n) → A
head' (x :: xs) = x

Before we conclude this section, it is interesting to note that we
could have used a type Vec' : (A : Set) (empty-or-not : B) →
Set that only documents whether a list is empty or not. However,
this option is less useful than the one that keeps track of a list’s
length. Indeed, a list’s length is useful as a “quick sanity check” when
defining operations on lists, and so having this simple correctness test
embedded at the (machine-checkable! ) type level results in a form of
“simple specfication” of functions. For example, the types of common
list operations can have some of their behaviour reflected in their type
via lengths of lists:

Simple Partial Specfications of List Operations

{- Neither length nor value type changes -}
reverse : ∀ {A n} → Vec A n → Vec A n

{- Only the type changes, the length stays the same -}
map : ∀ {A B n} → (A → B) → Vec A n → Vec B n

{- Length of the result is sum of lengths of inputs -}
_++_ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m + n)

In theory, lists and vectors are the same5 —where the latter are
essentially lists indexed by their lengths. In practice, however, the
additional length information stated up-front as an integral part of
the data structure makes it not only easier to write programs that
would otherwise be awkward or impossible6 in the latter case. For
instance, above we demonstrated that the function head, which ex-
tracts the first element of a non-empty list, not only has a difficult
type to read, but also requires an auxiliary relation/type in order
to be expressed. In contrast, the vector variant has a much sim-
pler type with the non-emptiness proviso expressed by requesting a
positive length.
It seems that vectors are the way to go —but that depends on where
one is going. For example, if we want to keep only elements of a
vector that satisfy a predicate p, as shown below. To type such an
operation we need to either know how many elements m satisfy the
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That is, the “same problem” arises
when, for example, discussing the in-
teraction between sequential program
composition _#_ and parallel program
composition _||_: The simultaneous
execution of programs P-then-P’ and
Q-then-Q’ results in the same be-
haviour as the sequential execution of
P-and-simultaneously-Q then P’-and-
simultaneously-Q’. That is, (P # P’)
|| (Q # Q’) = (P || Q) # (P’ # Q’).

For brevity, rather than consider pro-
gram language phrases and operators
on them, we abstract to bi-magmas —
which will be seen again in Chapter 6!

5 “Obviously sharing the same type” requires
‘do-nothing’ conversion functions!

predicate ahead of time, and so the return type is Vec A m; or we
‘Σ-pad’ the length parameter to essentially demote it from the type
level to the body level of the program.

Eek!

filter : ∀ {A n} → (A → B) → Vec A n → Σ m : N • Vec A m
filter p [] = 0 , []
filter p (x :: xs) with p x
...| true = let (m , ys) = filter p xs in 1 + m , x :: ys
...| false = filter p xs

3.1.2. “To Bundle or Not To Bundle”: Structure vs
Predicate Style Presentations

Given two different structures that share some sub-component, ex-
pressing that sharing post-facto can be very cumbersome, while if the
sharing is expressed via parameters, things are simple —even though
both encodings are equivalent. (This is ‘essentially’ the same prob-
lem as discussed in the previous section but in a different guise, as a
stepping stone to the more general situation.)
The phenomenon of exposing attributes at the type level to gain

flexibility applies not only to derived concepts such as non-emptiness,
but also to explicit features of a datatype. A common scenario is
when two instances of an algebraic structure share the same carrier
and thus it is reasonable to connect the two somehow by a coherence
axiom. But for such an equation to be well-typed, we need to know
that the composition operators work on the same kind of phrases —it
is surprisingly not enough to know that each combines certain kinds
of phrases that happen to be of the same kind.
Consider what is perhaps the most popular instance of structure-

sharing known to many from childhood, in the setting of rings: We
have an additive structure (R, +) and a multiplicative structure (R,
×) on the same underlying set R, and their interaction is dictated by
distributivity axioms, such as a× (b+ c) = (a× b) + (a× c). As with
head above, depending on which features of the structure are exposed
upfront, such axioms5 may be either difficult to express or relatively
easy. Below are the two possible ways to present a structure admiting
a type and a binary operation on that type.
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A Magma0 is a pair 〈C, op〉 of a type
C and an operation op on that type!

A Magma1 on a given type C is a one-
tuple 〈op〉 consisting of a binary oper-
ation on that type!

To bundle or to not bundle?

record Magma0 : Set1 where
constructor 〈_,_〉0
field
Carrier : Set
_#_ : Carrier → Carrier → Carrier

record Magma1 (Carrier : Set) : Set1 where
constructor 〈_〉1
field

_#_ : Carrier → Carrier → Carrier

Magma0
∼= (Σ C : Set • Magma1 C)

{- Abstract out a field -}
to : Magma0 → Σ C : Set • Magma1 C
to M = Magma0.Carrier M , 〈 Magma0._#_ M 〉1

{- Pack away a parameter -}
from : Σ C : Set • Magma1 C → Magma0

from (C , 〈 _#_ 〉1) = 〈 C , _#_ 〉0

-- These are inverse by “definition
chasing” (normalisation).↪→

to◦from : ∀ M → from (to M) ≡ M
to◦from 〈 Carrier , _#_ 〉0 = refl

from◦to : ∀ M → to (from M) ≡ M
from◦to (C , 〈 _#_ 〉1) = refl

In theory, parameterised structures are no different from their
unparameterised, or “bundled”, counterparts. Indeed, we can eas-
ily prove Magma0 ∼= (Σ C : Set • Magma1 C) by “packing away the
parameters” and ∀ (C : Set) → Magma1 C ∼= (Σ M : Magma0 •
M.Carrier ≡ C) by “abstracting a field as if it were a parameter”
—this is known as ‘Σ-padding’. Like the first isomorphism (proven
formally in the margin), the second is proven just as easily but suffers
from excess noise introduced by the Σ-padding, namely extra phrases
“ , refl ” that serve to keep track of important facts, but are oth-
erwise unhelpful. The proofs generalise easily on a case-by-case basis
to other kinds of structures, but they cannot be proven internally to
Agda in full generality.

Let us consider using the first presentation. When structures “pack
away” all their features, the simple distributivity property becomes a
bit of a challenge to write and to read.

Distributivity is Difficult to Express

record Distributivity0 (Additive Multiplicative : Magma0)
: Set1 where

open Magma0 Additive renaming (Carrier to R+; _#_ to _+_)
open Magma0 Multiplicative renaming (Carrier to R×; _#_ to _×_)

field shared-carrier : R+ ≡ R×

coe× :R+ →R×
coe× = subst id shared-carrier

coe+ :R× →R+
coe+ = subst id (sym shared-carrier)

field
distribute0 : ∀ {a : R×} {b c : R+}

→ a × coe× (b + c)
≡ coe× (coe+(a × coe× b) + coe+(a × coe× c))

It is a bit of a challenge to understand the type of distribute0.
Even though the carriers of the structures are propositionally equal,

CHAPTER 3. EXAMPLES FROM THE WILD



3.1. SIMPLIFYING PROGRAMS BY EXPOSING INVARIANTS
AT THE TYPE LEVEL 63

Bundled forms require (curved)
coercisions

7 In theory, numbers can be presented
equivalently using Arabic or Roman
numerals. In practice, doing arith-
metic is much more efficient using the
former presentation.

Unbundled forms have shared
components stated explicitly (as
parameters)

R+ ≡ R×, they are not the same by definition —the notion of equal-
ity was defined in Section 2.4.3. As such, we are forced to coerce back
and forth; leaving the distributivity axiom as an exotic property of
addition, multiplication, and coercions. Even worse, without the clev-
erness of declaring two coercion helpers, the typing of distribute0
would have been so large and confusing that the concept would be
rendered near useless. In particular, the cleverness is captured by
the solid curved arrows in the informal diagram to the right —where
the dashed lines denote inclusions or dependency relationships.

Multiplicative

Additive Distributivity

Shared
Carrier

Again, in theory, parameterised structures are no different from
their unparameterised, or “bundled”, counterparts. However, in prac-
tice, even when multiple presentations of an idea are equivalent in
some sense, there may be specific presentations that are useful for
particular purposes7 . That is, in a dependently-typed language,
equivalence of structures and their usability profiles do not neces-
sarily go hand-in-hand. Indeed, below we can phrase the distributiv-
ity axiom nearly as it was stated informally earlier since the shared
carrier is declared upfront.

Distributivity is Expressed Easily with Unbundled Structures

{- A magma “on” a given type is a binary operation
on that type -}

record Magma1 (Carrier : Set) : Set1 where
field

_#_ : Carrier → Carrier → Carrier

record Distributivity1
(R : Set) {- The shared carrier -}
(Additive Multiplicative : Magma1 R) : Set1 where

open Magma1 Additive renaming (_#_ to _+_)
open Magma1 Multiplicative renaming (_#_ to _×_)

field distribute1 : ∀ {a b c : R} → a × (b + c)
≡ (a × b) + (a × c)

In contrast to the bundled definition of magmas, this form requires
no cleverness to form coercion helpers, and is closer to the informal
and usual distributivity statement. The lack of the aforementioned
cleverness is captured by the following diagram: There are no solid
curved arrows that indicate how the shared component is to be found ;
instead, the shared component is explicit.

Shared
Carrier

Shared
Carrier Distributivity

Additive

Multiplicative

By the same arguments above, the simple statement relating the
two units of a ring 1 × r + 0 = r —or any units of monoids sharing
the same carrier— is easily phrased using an unbundled presentation
and would require coercions otherwise. We invite the reader to pause
at this moment to appreciate the difficulty in simply expressing this
property.
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If we refer to the former as IsX and
the latter as X , then we can see similar
instances in the standard library for X
being:

1. Monoid

2. Group

3. AbelianGroup

4. CommutativeMonoid

5. SemigroupWithoutOne

6. NearSemiring

7. Semiring

8.
CommutativeSemiringWithoutOne

9. CommutativeSemiring

10. CommutativeRing

Unbundling Design Pattern

If a feature of a class is shared among instances, then use
an unbundled form of the class to avoid “coercion hell”. See
Sections 3.1.3, 4.1, 7.2.

3.1.3. From IsX to X —Packing away components

The distributivity axiom, from above, required an unbundled struc-
ture after a completely bundled structure was initially presented.
Usually structures are rather large and have libraries built around
them, so building and using an alternate form is not practical. How-
ever, multiple forms are usually desirable.

For example, to accommodate the need for both forms of structure,
Agda’s Standard Library begins with a type-level predicate such as
IsSemigroup below, then packs that up into a record. Here is an
instance from the library.

From IsX to X —where X is Semigroup

record IsSemigroup {a `} {A : Set a} (≈ : Rel A `)
(· : Op2 A) : Set (a t `) where

open FunctionProperties ≈
field
isEquivalence : IsEquivalence ≈
assoc : Associative ·
·-cong : · Preserves2 ≈ −→ ≈ −→ ≈

From IsX to X —where X is Semigroup

record Semigroup c ` : Set (suc (c t `)) where
infixl 7 _·_
infix 4 _≈_
field

Carrier : Set c
_≈_ : Rel Carrier `
_·_ : Op2 Carrier
isSemigroup : IsSemigroup _≈_ _·_

It thus seems that to present an idea X , we require the same
amount of space to present it unpacked or packed, and so doing both
duplicates the process and only hints at the underlying principle:
From IsX we pack away the carriers and function symbols to obtain
X . The converse approach, starting from X and going to IsX is not
practical, as it leads to numerous unhelpful reflexivity proofs —c.f.,
the indeed proof of the _6=[] type for lists, from Section 3.1.1.
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8 Incidentally, the particular choice
X 1, a predicate on one carrier, de-
serves special attention. In Haskell,
instances of such a type are generally
known as typeclass instances and X 1

is known as a typeclass. As to be dis-
cussed later, in Section 5.1, in Agda,
we may mark such implementations
for instance search using the keyword
instance.
[10] Musa Al-hassy, Jacques Carette,
and Wolfram Kahl. “A language
feature to unbundle data at will
(short paper)”. In: Proceedings of
the 18th ACM SIGPLAN Interna-
tional Conference on Generative Pro-
gramming: Concepts and Experiences,
GPCE 2019, Athens, Greece, Octo-
ber 21-22, 2019. Ed. by Ina Schae-
fer, Christoph Reichenbach, and Tijs
van der Storm. ACM, 2019, pp. 14–
19. isbn: 978-1-4503-6980-0. doi: 10.
1145/3357765.3359523

α As in Xn, for n the number of sort
and function symbols of the structure.

Predicate Design Pattern

Present a concept X first as a predicate IsX on types and
function symbols, then as a type X consisting of types, func-
tion symbols, and a proof that together they satisfy the IsX
predicate.

Σ-Padding Anti-Pattern: Starting from a bundled up type
X consisting of types, function symbols, and how they inter-
act, one may form the type Σ X : X • X.f X ≡ f0 to specialise
the feature X.f to the particular choice f0. However, nearly
all uses of this type will be of the form (X , refl) where the
refl proof is unhelpful noise.

Since the standard library uses the predicate pattern, IsX , which
requires all sets and function symbols, the Σ-padding anti-pattern
becomes a necessary evil. Instead, it would be preferable to have the
family X i which is the same as IsX but only8 takes i-many elements
—c.f., Magma0 and Magma1 above. However, writing these variations
and the necessary functions to move between them is not only tedious
but also error prone. Later on, also demonstrated in [10], we shall
show how the bundled form X acts as the definition, with other forms
being derived-as-needed.

In summary, as the previous two discussions have shown, bundled
presentations (as in X 0) suffer from the inability to declare shared
components between structures —thereby necessitating some form of
Σ-padding— and makes working with shared components non-trivial
due to the need to rewrite along propositional equalities, as was the
case with simply stating the distributivity law using Magma0. Another
problem with fully bundled structures is that accessing deeply nested
components requires lengthy projection paths, which is not only cum-
bersome but also exposes the hierarchical design of the structure,
thereby limiting library designers from reorganising such hierarchies
in the future. In constrast, unbundled presentationsα are flexible in
theory, but in practice one must enumerate all components to actually
state and apply results about such structures.

Typeclass Design Pattern

Present a concept X as a unary predicate X 1 that associates
functions and properties with a given type. Then, mark all im-
plementations with instance so that arbitrary X -terms may
be written without having to specify the particular instance.

As to be discussed in Section 5.1, when there are multiple
instance of an X -structure on a particular type, only one of
them may be marked for instance search in a given scope.
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[38] Bas Spitters and Eelis van der
Weegen. “Type classes for mathemat-
ics in type theory”. In: Mathematical
Structures in Computer Science 21.4
(2011), pp. 795–825. doi: 10 . 1017/
S0960129511000119

With the exception of discussions in-
volving the Yoneda Lemma, or con-
tinuations, such a notation is simply
‘wrong’.

It is more common to use addition or
join, ‘t’, to denote idempotent opera-
tions.

The use of e is a standard, abbrevi-
ating einheit which means identity, as
used in influential algebraic works of
German authors.
Even if monoids are defined with the
prototypical binary operation denoted
‘+’, it would be ‘wrong’ to continue
using it to denote functional composi-
tion.

The underscore denotes an ‘anony-
mous variable’ (i.e., an ignored vari-
able).

Type Classes for Mathematics in Type Theory [38] discusses the
numerous problems of bundled presentations as well as the issues of
unbundled presentations and settles on using typeclasses along with
their tremendously useful instance search mechanism. Since we view
X 1 as a particular choice in the family (Xw)w∈N, our approach is
to instead have library designers define X 0 and let users easily, me-
chanically, declaratively, produce Xw for any ‘parameterisation waist’
w : N. This idea is implemented for Agda, as an in-language library,
and discussed in Chapter 7.

Notice that to phrase the distributivity law we assigned superficial
renamings, aliases, to the prototypical binary operation _#_ so that
we may phrase the distributivity axiom in its expected notational
form. This leads us to our next topic of discussion.

3.2. Renaming

The use of an idea is generally accompanied with particular notation
that is accepted by its primary community. Even though the choice
of bound names it theoretically irrelevant, certain communities would
consider it unacceptable to deviate from convention. Here are a few
examples:

x(f) Using x as a function and f as an argument.; likewise ∂x
∂f .

a× a = a An idempotent operation denoted by multiplication; like-
wise for commutative operations.

0× a ≈ a The identity of “multiplicative symbols” should never re-
semble ‘0’; instead it should resemble ‘1’ or, at least, ‘e’.

f + g The sequential composition of functions is almost universally
denoted by multiplicative symbols, such as ‘◦’, ‘#’, and ‘·’.

Ξ

Ξ
In a context involving numerous fractions, it would be cruel to use

‘Ξ’ as a variable name.

Likewise, ‘λ’ is great in Linear Algebra where it generally de-
notes a scalar, such as an eigenvalue. In computing, “λx” could
be read as a multiplication of λ and x, as a single identifier, or
as a typo for a function such as the identity function λx • x
or the everywhere x function λ_ • x .
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I have seen the use of the existential
quantifier ‘∃’ as a variable name; in-
particular to denote the converse (flip)
of a relation named ‘E’.

[39] Agda Standard Library. 2020.
url: https://github.com/agda/agda-
stdlib (visited on 03/03/2020)

[6] Wolfram Kahl. Relation-Algebraic
Theories in Agda. 2018. url: http:
//relmics.mcmaster.ca/RATH-Agda/
(visited on 10/12/2018)

[40] Jason Hu Jacque Carrette. agda-
categories library. 2020. url: https:
//github.com/agda/agda- categories
(visited on 08/20/2020)

e ≤ ε ∈ E ⊆ ∃ Using typographically similar names for elements and
sets can create a bit of confusion.

From the few examples above, it is immediate that to even present
a prototypical notation for an idea, one immediately needs auxiliary
notation when specialising to a particular instance. For example, to
use ‘additive symbols’ such as +,t,⊕ to denote an arbitrary binary
operation leads to trouble in the function composition instance above,
whereas using ‘multiplicative symbols’ such as ×, ·, ∗ leads to trouble
in the idempotent case above. Regardless of prototypical choices,
there will always be a need to rename.

Renaming Design Pattern

Use superficial aliases to better communicate an idea; espe-
cially so, when the topic domain is specialised.

Let’s now turn to examples of renaming from three libraries:

1. Agda’s “standard library” [39] (version 1.3),

2. The “RATH-Agda” library [6] (version 2.2), and

3. A recent “agda-categories” library [40] (version 0.1.4).

Each will provide a workaround to the problem of renaming. In
particular, the solutions are, respectively:

1. Rename as needed.

� There is no systematic approach to account for the many
common renamings.

� Users are encouraged to do the same, since the standard
library does it this way.

2. Pack-up the common renamings as modules, and in-
voke them when needed.

� Which renamings are provided is left at the discretion of
the designer —even ‘expected’ renamings may not be there
since, say, there are too many choices or insufficient man
power to produce them.

� The pattern to pack-up renamings leads nicely to consis-
tent naming.

3. Names don’t matter.
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Keep an eye out for all those
renaming (η1 to η1'; . . .; ηk to ηk')

lines!

� Users of the library need to be intimately connected with
the Agda definitions and domain to use the library.

� Consequently, there are many inconsistencies in naming.

The open · · · public · · · renaming · · · pattern shown below will
reappear later, in Section 6.3, as a library method.

The “Shape” of Renaming Blocks in Agda

open IsMonoid +-isMonoid public
renaming ( assoc to +-assoc

; ·-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
)

The content itself is not important itself: The focus is on the re-
naming that takes place. As such, going forward, we intentionally
render such clauses in a tiny fontsize.
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3.2.1. Renaming Problems from Agda’s Standard Library

Below are four excerpts from Agda’s standard library, notice how the prototypical notation for
monoids is renamed repeatedly as needed. Sometimes it is relabelled with additive symbols,
other times with multiplicative symbols.

Additive Renaming —IsNearSemiring

record IsNearSemiring {a `} {A : Set a} (≈ : Rel A `)
(+ * : Op2 A) (0# : A) : Set (a t `) where

open FunctionProperties ≈
field
+-isMonoid : IsMonoid ≈ + 0#
*-isSemigroup : IsSemigroup ≈ *
distribr : * DistributesOverr +
zerol : LeftZero 0# *

open IsMonoid +-isMonoid public
renaming ( assoc to +-assoc

; ·-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
)

open IsSemigroup *-isSemigroup public
using ()
renaming ( assoc to *-assoc

; ·-cong to *-cong
) Additive Renaming Again —IsSemiringWithoutOne

record IsSemiringWithoutOne {a `} {A : Set a} (≈ : Rel A `)
(+ * : Op2 A) (0# : A) : Set (a t `)

where
open FunctionProperties ≈
field
+-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0#
*-isSemigroup : IsSemigroup ≈ *
distrib : * DistributesOver +
zero : Zero 0# *

open IsCommutativeMonoid +-isCommutativeMonoid public
hiding (identityl)
renaming ( assoc to +-assoc

; ·-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; comm to +-comm
)

open IsSemigroup *-isSemigroup public
using ()
renaming ( assoc to *-assoc

; ·-cong to *-cong
)

Please keep a lookout for the renaming ( · · · ) lines; it is such a schematic shape that is
important —not the actual content—; whence the intentionally scriptsize font.
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Additive Renaming a 3rd Time and Multiplicative Renaming
—IsSemiringWithoutAnnihilatingZero

record IsSemiringWithoutAnnihilatingZero
{a `} {A : Set a} (≈ : Rel A `)
(+ * : Op2 A) (0# 1# : A) : Set (a t `) where

open FunctionProperties ≈
field
+-isCommutativeMonoid : IsCommutativeMonoid ≈ + 0#
*-isMonoid : IsMonoid ≈ * 1#
distrib : * DistributesOver +

open IsCommutativeMonoid +-isCommutativeMonoid public
hiding (identityl)
renaming ( assoc to +-assoc

; ·-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; comm to +-comm
)

open IsMonoid *-isMonoid public
using ()
renaming ( assoc to *-assoc

; ·-cong to *-cong
; isSemigroup to *-isSemigroup
; identity to *-identity
)

Additive Renaming a 4th Time and Second Multiplicative Renaming —IsRing

record IsRing
{a `} {A : Set a} (≈ : Rel A `)
(_+_ _*_ : Op2 A) (-_ : Op1 A) (0# 1# : A) : Set (a t `)

where
open FunctionProperties ≈
field
+-isAbelianGroup : IsAbelianGroup ≈ _+_ 0# -_
*-isMonoid : IsMonoid ≈ _*_ 1#
distrib : _*_ DistributesOver _+_

open IsAbelianGroup +-isAbelianGroup public
renaming ( assoc to +-assoc

; ·-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
; isMonoid to +-isMonoid
; inverse to -^inverse
; −1-cong to -^cong
; isGroup to +-isGroup
; comm to +-comm
; isCommutativeMonoid to +-isCommutativeMonoid
)

open IsMonoid *-isMonoid public
using ()
renaming ( assoc to *-assoc

; ·-cong to *-cong
; isSemigroup to *-isSemigroup
; identity to *-identity
)
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At first glance, one solution would be to package up these renamings into helper modules.
For example, consider the setting of monoids.

Original —Prototypical— Notations

record IsMonoid {a `} {A : Set a} (≈ : Rel A `)
(· : Op2 A) (ε : A) : Set (a t `) where

open FunctionProperties ≈
field
isSemigroup : IsSemigroup ≈ ·
identity : Identity ε ·

record IsCommutativeMonoid {a `} {A : Set a} (≈ : Rel A `)
(_·_ : Op2 A) (ε : A) : Set (a t `) where

open FunctionProperties ≈
field
isSemigroup : IsSemigroup ≈ _·_
identityl : LeftIdentity ε _·_
comm : Commutative _·_

...
isMonoid : IsMonoid ≈ _·_ ε
isMonoid = record { · · · }

Renaming Helper Modules

module AdditiveIsMonoid {a `} {A : Set a} {≈ : Rel A `}
{_·_ : Op2 A} {ε : A} (+-isMonoid : IsMonoid ≈ _·_ ε) where

open IsMonoid +-isMonoid public
renaming ( assoc to +-assoc

; ·-cong to +-cong
; isSemigroup to +-isSemigroup
; identity to +-identity
)

module AdditiveIsCommutativeMonoid {a `} {A : Set a} {≈ : Rel A `}
{_·_ : Op2 A} {ε : A} (+-isCommutativeMonoid : IsMonoid ≈ _·_ ε) where

open AdditiveIsMonoid (CommutativeMonoid.isMonoid +-isCommutativeMonoid) public
open IsCommutativeMonoid +-isCommutativeMonoid public using ()

renaming ( comm to +-comm
; isMonoid to +-isMonoid)

However, one then needs to make similar modules for additive notation for IsAbelianGroup,
IsRing, IsCommutativeRing, . . .. Moreover, this still invites repetition: Additional nota-
tions, as used in IsSemiring, would require additional helper modules.
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More Necessary Renaming Helper Modules

module MultiplicativeIsMonoid {a `} {A : Set a} {≈ : Rel A `}
{_·_ : Op2 A} {ε : A} (*-isMonoid : IsMonoid ≈ _·_ ε) where

open IsMonoid *-isMonoid public
renaming ( assoc to *-assoc

; ·-cong to *-cong
; isSemigroup to *-isSemigroup
; identity to *-identity
)

Unless carefully organised, such notational modules would bloat the standard library, resulting
in difficulty when navigating the library. As it stands however, the new algebraic structures
appear large and complex due to the “renaming hell” encountered to provide the expected
conventional notation.

3.2.2. Renaming Problems from the RATH-Agda Library

The impressive Relational Algebraic Theories in Agda library takes a disciplined approach:
Copy-paste notational modules, possibly using a find-replace mechanism to vary the notation.
The use of a find-replace mechanism leads to consistent naming across different notations.

RATH: For contexts where calculation in different setoids is necessary, we provide
“decorated” versions of the Setoid’ and SetoidCalc interfaces [. . . ]

CHAPTER 3. EXAMPLES FROM THE WILD

http://relmics.mcmaster.ca/RATH-Agda/RATH-Agda-2.2.pdf


3.2. RENAMING 73

SeotoidD Renamings —Decorated Synonyms

module SetoidA {i j : Level} (S : Setoid i j) = Setoid' S renaming
( ` to `A ; Carrier to A0 ; _≈_ to _≈A_ ; ≈-isEquivalence to ≈A-isEquivalence
; ≈-isPreorder to ≈A-isPreorder ; ≈-preorder to ≈A-preorder
; ≈-indexedSetoid to ≈A-indexedSetoid
; ≈-refl to ≈A-refl ; ≈-reflexive to ≈A-reflexive ; ≈-sym to ≈A-sym
; ≈-trans to ≈A-trans ; ≈-trans1 to ≈A-trans1 ; ≈-trans2 to ≈A-trans2
; _〈≈≈〉_ to _〈≈A≈〉_ ; _〈≈≈˘〉_ to _〈≈A≈˘〉_ ; _〈≈˘≈〉_ to _〈≈A˘≈〉_
; _〈≈˘≈˘〉_ to _〈≈A˘≈˘〉_; _〈≡≈〉_ to _〈≡≈A〉_ ; _〈≡≈˘〉_ to _〈≡≈A˘〉_
; _〈≡˘≈〉_ to _〈≡˘≈A〉_ ; _〈≡˘≈˘〉_ to _〈≡˘≈A˘〉_ ; _〈≈≡〉_ to _〈≈A≡〉_
; _〈≈≡˘〉_ to _〈≈A≡˘〉_ ; _〈≈˘≡〉_ to _〈≈A˘≡〉_ ; _〈≈˘≡˘〉_ to _〈≈A˘≡˘〉_
)

module SetoidB {i j : Level} (S : Setoid i j) = Setoid' S renaming
( ` to `B ; Carrier to B0 ; _≈_ to _≈B_ ; ≈-isEquivalence to ≈B-isEquivalence
; ≈-isPreorder to ≈B-isPreorder ; ≈-preorder to ≈B-preorder
; ≈-indexedSetoid to ≈B-indexedSetoid
; ≈-refl to ≈B-refl ; ≈-reflexive to ≈B-reflexive ; ≈-sym to ≈B-sym
; ≈-trans to ≈B-trans ; ≈-trans1 to ≈B-trans1 ; ≈-trans2 to ≈B-trans2
; _〈≈≈〉_ to _〈≈B≈〉_ ; _〈≈≈˘〉_ to _〈≈B≈˘〉_ ; _〈≈˘≈〉_ to _〈≈B˘≈〉_
; _〈≈˘≈˘〉_ to _〈≈B˘≈˘〉_ ; _〈≡≈〉_ to _〈≡≈B〉_ ; _〈≡≈˘〉_ to _〈≡≈B˘〉_
; _〈≡˘≈〉_ to _〈≡˘≈B〉_ ; _〈≡˘≈˘〉_ to _〈≡˘≈B˘〉_ ; _〈≈≡〉_ to _〈≈B≡〉_
; _〈≈≡˘〉_ to _〈≈B≡˘〉_ ; _〈≈˘≡〉_ to _〈≈B˘≡〉_ ; _〈≈˘≡˘〉_ to _〈≈B˘≡˘〉_
)

module SetoidC {i j : Level} (S : Setoid i j) = Setoid' S renaming
( ` to `C ; Carrier to C0 ; _≈_ to _≈C_ ; ≈-isEquivalence to ≈C-isEquivalence
; ≈-isPreorder to ≈C-isPreorder ; ≈-preorder to ≈C-preorder
; ≈-indexedSetoid to ≈C-indexedSetoid
; ≈-refl to ≈C-refl ; ≈-reflexive to ≈C-reflexive ; ≈-sym to ≈C-sym
; ≈-trans to ≈C-trans ; ≈-trans1 to ≈C-trans1 ; ≈-trans2 to ≈C-trans2
; _〈≈≈〉_ to _〈≈C≈〉_ ; _〈≈≈˘〉_ to _〈≈C≈˘〉_ ; _〈≈˘≈〉_ to _〈≈C˘≈〉_
; _〈≈˘≈˘〉_ to _〈≈C˘≈˘〉_ ; _〈≡≈〉_ to _〈≡≈C〉_ ; _〈≡≈˘〉_ to _〈≡≈C˘〉_
; _〈≡˘≈〉_ to _〈≡˘≈C〉_ ; _〈≡˘≈˘〉_ to _〈≡˘≈C˘〉_ ; _〈≈≡〉_ to _〈≈C≡〉_
; _〈≈≡˘〉_ to _〈≈C≡˘〉_ ; _〈≈˘≡〉_ to _〈≈C˘≡〉_ ; _〈≈˘≡˘〉_ to _〈≈C˘≡˘〉_
)

This keeps going to cover the entirety of the English alphabet SetoidD, SetoidE, SetoidF,
. . ., SetoidZ then we shift to a few subscripted versions Setoid0, Setoid1, . . ., Setoid4.

Next, RATH-Agda shifts to the need to calculate with setoids:
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SeotoidCalcD Renamings
—Ddecorated Synonyms

module SetoidCalcA {i j : Level} (S : Setoid
i j) where↪→

open SetoidA S public
open SetoidCalc S public renaming
( _QED to _QEDA
; _≈〈_〉_ to _≈A〈_〉_
; _≈˘〈_〉_ to _≈A˘〈_〉_
; _≈≡〈_〉_ to _≈A≡〈_〉_
; _≈〈〉_ to _≈A〈〉_
; _≈≡˘〈_〉_ to _≈A≡˘〈_〉_
; ≈-begin_ to ≈A-begin_
)

module SetoidCalcB {i j : Level} (S : Setoid
i j) where↪→

open SetoidB S public
open SetoidCalc S public renaming
( _QED to _QEDB
; _≈〈_〉_ to _≈B〈_〉_
; _≈˘〈_〉_ to _≈B˘〈_〉_
; _≈≡〈_〉_ to _≈B≡〈_〉_
; _≈〈〉_ to _≈B〈〉_
; _≈≡˘〈_〉_ to _≈B≡˘〈_〉_
; ≈-begin_ to ≈B-begin_
)

This keeps going to cover the entire
English alphabet SetoidCalcC, SetoidCalcD,
SetoidCalcE, . . ., SetoidCalcZ then we
shift to subscripted versions SetoidCalc0,
SetoidCalc1, . . ., SetoidCalc4.

If we ever have more than 4 setoids in hand, or
prefer other decorations, then we would need to
produce similar helper modules.

Each SetoidXXX takes around 10 lines,
for a total of roughly 600 lines!

Indeed, such renamings bloat the library, but, unlike the Standard Library, they allow new
records to be declared easily —“renaming hell” has been deferred from the user to the library
designer. However, later on, in Categoric.CompOp, we see the variations LocalEdgeSetoidD
and LocalSetoidCalcD where decoration D ranges over 0, 1, 2, 3, 4, R. The inconsistency
in not providing the other decorations used for SetoidD earlier is understandable: These take
time to write and maintain.
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α Perhaps naming was ignored for the
sake of quick development and new
names may be used in a later relsease.

More meaningful names may be obj,
mor, mor-cong—which refer to a func-
tor’s “obj”ect map, “mor”phism map,
and the fact that the “mor”phism map
is a “cong”ruence.

Instead, more meaningful names
such as embed, keep, id-kept,
keep-resp-◦ could have been used.

These unexpected deviations are
not too surprising since the Agda-
categories library seems to give names
no priority at all. Field projections are
treated little more than classic array
indexing with numbers.

3.2.3. Renaming Problems from the Agda-categories
Library

With RATH-Agda’s focus on notational modules at one end of the
spectrum, and the Standard Library’s casual do-as-needed in the mid-
dle, it is inevitable that there are other equally popular libraries at
the other end of the spectrum. The Agda-categories library seem-
inglyα ignored the need for meaningful names altogether. Below are
a few notable instances.

� Functors have fields named F0, F1, F-resp-≈, . . ..

◦ This could be considered reasonable even if one has a func-
tor named G.

� Such lack of concern for naming might be acceptable for well-
known concepts such as functors, where some communities use
Fi to denote the object/0-cell or morphism/1-cell operations.
However, considering subcategories one sees field names U, R,
Rid, _◦R_ which are wholly unhelpful.

� The Iso, Inverse, and NaturalIsomorphism records have
fields to / from, f / f−1, and F⇒ G / F⇐ G, respectively.

Even though some of these build on one another, with Agda’s
namespacing features, all “forward” and “backward” morphism
fields could have been named, say, to and from. The naming
may not have propagated from Iso to other records possibly
due to the low priority for names.

From a usability perspective, projections like f are reminiscent
of the OCaml community and may be more acceptable there.
Since Agda is more likely to attract Haskell programmers than
OCaml ones, such a peculiar projection name seems completely
out of place. Likewise, the field name F ⇒ G seems only ap-
propriate if the functors involved happen to be named F and
G.
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Declare _≈0_ and _≈1_ to be
Setoid._≈_ (F0 Nat[Hom[C][-,c],F] (F , A))
and, respectively, Setoid._≈_ (F0 F B)
.

The subscripts are for ‘s’ource/1 and
‘t’arget/2, for a morphism

f : source f → target f

or f : X1 → X2 .

? ? ?

Just an application of a functor’s mor-
phism mapping.

By largely avoiding renaming, Agda-categories has no “renaming hell” anywhere at
the heavy price of being difficult to read: Any attempt to read code requires one to
“squint away” the numerous projections to “see” the concepts of relevance. Consider
the following excerpt.

Symbol Soup

helper : ∀ {F : Functor (Category.op C) (Setoids ` e)}
{A B : Obj} (f : B ⇒ A)
(β γ : NaturalTransformation Hom[ C ][-, A ] F) →

Setoid._≈_ (F0 Nat[Hom[C][-,c],F] (F , A)) β γ →
Setoid._≈_ (F0 F B) (η β B 〈$〉 f ◦ id) (F1 F f 〈$〉 (η γ A
〈$〉 id))↪→

helper {F} {A} {B} f β γ β≈γ = S.begin
η β B 〈$〉 f ◦ id S.≈〈 cong (η β B) (id-comm ◦ (⇐⇒

identityl)) 〉↪→

η β B 〈$〉 id ◦ id ◦ f S.≈〈 commute β f CE.refl 〉
F1 F f 〈$〉 (η β A 〈$〉 id) S.≈〈 cong (F1 F f) (β≈γ CE.refl) 〉
F1 F f 〈$〉 (η γ A 〈$〉 id) S.�
where module S where

open Setoid (F0 F B) public
open SetoidR (F0 F B) public

Here are a few downsides of not renaming:

1. The type of the function is difficult to comprehend; though it
need not be.

If we declare a few names, the type reads: If β ≈0 γ then
η β B 〈$〉 f ◦ id ≈1 F1 F f 〈$〉 (η γ A 〈$〉 id). This is
just a naturality condition, which are ubiquitous in category
theory.

2. The short proof is difficult to read!

The repeated terms such as η β B and η β A could have been
renamed with mnemonic-names such as η1, η2 or ηs, ηt.

The sequence of f ’s “ F1 F f ” looks strange at a first glance;
with the alternative suggested naming it just denotes mor F f.

Since names are given a lower priority, one no longer needs to
perform renaming. Instead, one is content with projections. The
downside is now there are too many projections, leaving code difficult
to comprehend. Moreover, this leads to inconsistent (re)naming.
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6 For instance, if we wish to model
finite functions as hashmaps, we
need to omit the identity functions
since they may have infinite
domains; and we cannot simply
enforce a convention, say, to treat
empty hashmaps as the identities
since then we would lose the empty
functions. Incidentally, this
example, among others, led to
dropping the identity features from
Categories to obtain so-called
Semigroupoids.

[41] Robert C. Martin. Design Prin-
ciples and Design Patterns. Ed. by
Deepak Kapur. 1992. url: https://
fi.ort.edu.uy/innovaportal/file/2032/
1 / design_principles . pdf (visited on
10/19/2018)

In particular, the Category type and
the natural isomorphism type are in-
stances of such a pattern.

3.3. Redundancy, Derived Features, and
Feature Exclusion

A tenet of software development is not to over-engineer solutions.
For example, if we need a notion of untyped composition, we may
use Monoid. However, at a later stage, we may realise that units are
inappropriate6 and so we need to drop them to obtain the weaker
notion of Semigroup. In weaker languages, we could continue to use
the monoid interface at the cost of “throwing an exception” whenever
the identity is used. However, this breaks the Interface Segregation
Principle: Users should not be forced to bother with features they are
not interested in [41]. A prototypical scenario is exposing an expres-
sive interface, possibly with redundancies, to users, but providing
a minimal self-contained counterpart by dropping some features for
the sake of efficiency or to act as a “smart constructor” that takes the
least amount of data to reconstruct the rich interface. Tersely put:
One axiomatisation may be ideal for verifying instances, whereas an
equivalent but possibly longer axiomatisation may be more amicable
for calculation and computation.

More concretely, in the Agda-categories library one finds concepts
with expressive interfaces, with redundant features, prototypically
named X , along with their minimal self-contained versions, proto-
typically named XHelper. The redundant features are there to
make the lives of users easier; e.g., quoting Agda-categories, We add
a symmetric proof of associativity so that the opposite category of
the opposite category is definitionally equal to the original category.
To underscore the intent, to the right we have presented a minimal
setup needed to express the issue. The semigroup definition contains
a redundant associativity axiom —which can be obtained from the
first one by applying symmetry of equality. This is done purposefully
so that the “opposite, or dual, transformer” _˘ is self-inverse on-the-
nose; i.e., definitionally rather than propositionally equal. Definition-
ally equality does not need to be ‘invoked’, it is used silently when
needed, thereby making the redundant setup ‘worth it’ —see Section
2.4.3 for a discussion on equality.

Redundancy can lead to silently used
equalities
record Semigroup : Set1 where

constructor S
field

Carrier : Set
_#_ : Carrier → Carrier → Carrier
assocr : ∀ {x y z} → (x # y) # z

≡ x # (y # z)
assocl : ∀ {x y z} → x # (y # z)

≡ (x # y) # z

-- Notice: assocl ≈ sym assocr

smart : (C : Set) (_#_ : C → C → C)
(assocr : ∀ {x y z} → (x # y) # z

≡ x # (y # z))
→ Semigroup

smart C _#_ asoc = S C _#_ asoc (sym asoc)

-- The opposite of the opposite
-- is definitionally equal to the original

_˘ : Semigroup → Semigroup
(S car _#_ assocr assocl) ˘

= S car (λ b a → a # b) assocl assocr

˘˘≈id : ∀ {S} → (S ˘) ˘ ≡ S
˘˘≈id = refl

On-the-nose Redundancy Design Pattern (Agda-
Categories)

Include redundant features if they allow certain common con-
structions to be definitionally equal, thereby requiring no over-
head to use such an equality. Then, provide a smart construc-
tor so users are not forced to produce the redundant features
manually.
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7 In particular, in the X and
XHelper naming scheme: The
NaturalIsomorphism type has
NIHelper as its minimised version,
and the type of symmetric
monoidal categories is oddly called
Symmetric’ with its helper named
Symmetric.

Incidentally, since this is not a library method, inconsistencies7 are
bound to arise. Such issues could be reduced, if not avoided, if library
methods could have been used instead of manually implementing de-
sign patterns.

It is interesting to note that duality forming operators, such as
_˘ above, are a design pattern themselves. How? In the setting of
algebraic structures, one picks an operation to have its arguments
flipped, then systematically ‘flips’ all proof obligations via a user-
provided symmetry operator. We shall return to this as a library
method in a future section.

Another example of purposefully keeping redundant features is for
the sake of efficiency; e.g., quoting RATH-Agda (Section 15.13), For
division semi-allegories, even though right residuals, restricted resid-
uals, and symmetric quotients all can be derived from left residuals,
we still assume them all as primitive here, since this produces more
readable goals, and also makes connecting to optimised implementa-
tions easier. For instance, the above semigroup type could have
been augmented with an ordering if we view _#_ as a meet-operation.
Instead, we could lift such a derived operation as a primitive field, in
case the user has a better implementation.

Simulating Default Implementations with
Smart Constructors
record Order (S : Semigroup) : Set1 where

constructor O
open Semigroup S public
field

_v_ : Carrier → Carrier → Set
v-def : ∀ {x y} → (x v y)

≡ (x # y ≡ x)

{- Results about _#_ and _v_ here . . . -}

defaultOrder : ∀ S → Order S
defaultOrder S = let open Semigroup S in

O (λ x y → x # y ≡ x)
refl

Efficient Redundancy Design Pattern (RATH-Agda
Section 17.1)

To enable efficient implementations, replace derived opera-
tors with additional fields for them and for the equalities that
would otherwise be used as their definitions. Then, provide
instances of these fields as derived operators, so that in the
absence of more efficient implementations, these default im-
plementations can be used with negligible penalty over a de-
velopment that defines these operators as derived in the first
place.

3.4. Extensions

In our previous discussion, we needed to drop features from Monoid
to get Semigroup. However, excluding the unit-element from the
monoid also required excluding the identity laws. More generally,
all features reachable, via occurrence relationships, must be dropped
when a particular feature is dropped. In some sense, a generated
graph of features needs to be “ripped out” from the starting type,
and the generated graph may be the whole type. As such, in general,
we do not know if the resulting type even has any features.

CHAPTER 3. EXAMPLES FROM THE WILD

https://github.com/agda/agda-categories/blob/master/src/Categories/Category/Monoidal/Symmetric.agda
https://github.com/agda/agda-categories/blob/master/src/Categories/Category/Monoidal/Symmetric.agda


3.4. EXTENSIONS 79

It is interesting to note that diamond
hierarchies cannot be trivially elimi-
nated when providing fine-grained hi-
erarchies. As such, we make no rash
decisions regarding limiting them —
and completely forego the unreason-
able possibility of forbidding them.

Instead of ‘ripping things out’, in an ideal world, it may be prefer-
able to begin with a minimal interface then extend it with features as
necessary. E.g., begin with Semigroup then add orthogonal features
until Monoid is reached. Extensions are also known as subclassing or
inheritance.

The libraries mentioned thus far generally implement extensions in
this way. By way of example, here is how monoids could be built
directly from semigroups along a particular path in the above hier-
archy.

Extending Semigroup to Obtain Monoid

record Semigroup : Set1 where
field
Carrier : Set
_#_ : Carrier → Carrier → Carrier
assoc : ∀ {x y z} → (x # y) # z ≡ x # (y # z)

record PointedSemigroup : Set1 where
field semigroup : Semigroup
open Semigroup semigroup public -- (?)
field Id : Carrier

record LeftUnitalSemigroup : Set1 where
field pointedSemigroup : PointedSemigroup
open PointedSemigroup pointedSemigroup public -- (?)
field leftId : ∀ {x} → Id # x ≡ x

record Monoid : Set1 where
field leftUnitalSemigroup : LeftUnitalSemigroup
open LeftUnitalSemigroup leftUnitalSemigroup public -- (?)
field rightId : ∀ {x} → x # Id ≡ x

open Monoid -- (?, *)

neato : ∀ {M} → Carrier M → Carrier M → Carrier M
neato {M} = _#_ M -- (*); Possible due to all of the (?) above

Extensions are not flattened inheritance
woah : Monoid
woah = record

{ leftUnitalSemigroup
= record { pointedSemigroup

= record { semigroup
= record
{ Carrier = {!!}
; _#_ = {!!}
; assoc = {!!}
} -- Nesting level

3↪→

; Id = {!!}
} -- Nesting level 2

; leftId = {!!}
} -- Nesting level 1

; rightId = {!!}
} -- Nesting level 0

Notice how we accessed the binary operation _#_ feature from
Semigroup as if it were a native feature of Monoid. Unfortunately, _#_
is only superficially native to Monoid —any actual instance, such as
woah to the right, needs to define the binary operation in a Semigroup
instance first, which lives in a PointedSemigroup instance, which
lives in a LeftUnitalSemigroup instance.
This nesting scenario happens rather often, in one guise or another.

The amount of syntactic noise required to produce a simple instanti-
ation is unreasonable: One should not be forced to work through the
hierarchy if it provides no immediate benefit.

Even worse, pragmatically speaking, to access a field deep down in
a nested structure results in overtly lengthy and verbose names; as
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A more common example from pro-
gramming is that of providing monad
instances in Haskell. Most often users
want to avoid tedious case analysis
or prefer a sequential-style approach
to producing programs, so they want
to furnish a type constructor with
a monad instance in order to utilise
Haskell’s do-notation. Unfortunately,
this requires an applicative instance,
which in turn requires a functor in-
stance. However, providing the return-
and-bind interface for monads allows
us to obtain functor and applicative
instances. Consequently, many users
simply provide local names for the
return-and-bind interface then use that
to provide the default implementations
for the other interfaces. In this sce-
nario, the standard approach is side-
stepped by manually carrying out a
mechanical and tedious set of steps
that not only wastes time but obscures
the generic process and could be error-
prone.

shown below. Indeed, in the above example, the monoid operation
lives at the top-most level, we would need to access all the interme-
diary levels to simply refer to it. Such verbose invocations would
immediately give way to helper functions to refer to fields lower in
the hierarchy; yet another opportunity for boilerplate to leak in.

Extensions require deep —‘staircase’— projections

-- Without the (?) “public” declarations,
-- projections are difficult!
carrier : Monoid → Set
carrier M = Semigroup.Carrier

(PointedSemigroup.semigroup
(LeftUnitalSemigroup.pointedSemigroup
(Monoid.leftUnitalSemigroup M)))

Ca
rrier

Se

migroup

Po

int
ed Semigroup

Le
ft U

nital Semigroup

Monoid

Extension Design Pattern

To extend a structure X by new features f0, . . ., fn which
may mention features of X , make a new structure Y with
fields for X, f0, . . ., fn. Then publicly open X in this new
structure (?) so that the features of X are visible directly
from Y to all users —see lines marked (*) above.

Extension Design Pattern Prototype

record Y : Set1 where
field x : X
open X x public -- (?)
field f0 : · · ·

...
field fn : · · ·

While library designers may be content to build Monoid out of
Semigroup, users should not be forced to learn about how the hier-
archy was built. Even worse, when the library designers decide to
incorporate, say, RightUnitalSemigroup instead of the left unital
form, then all users’ code would break.

Instead, it would be preferable to have a ‘flattened’ presentation
for the users that “does not leak out implementation details”. That is,
a ‘flattened’ hierarchy may be seen as a single package, consisting of
the fields throughout the hierarchy, possibly with default implemen-
tations, yet still be able to view the resulting package at base levels
in the hierarchy —c.f., Section 3.3. Another benefit of this approach
is that it allows users to utilise the package without consideration of
how the hierarchy was formed, thereby providing library designers
with the freedom to alter it in the future.

3.5. Conclusion

After ‘library spelunking’, we are now in a position to summarise
the problems encountered, when using existing module systems, that
need a solution. From our learned lessons, we can then pinpoint a
necessary feature of an ideal module system for dependently-typed
languages.
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That sounds like a terrific idea! We
do it in a future chapter ;-)

“By hand” is tedious, error prone, and
obscures the generic rewriting method!

There are many more design pat-
terns in dependently-typed program-
ming. Since grouping mechanisms are
our topic, we have only presented those
involving organising data.

3.5.1. Lessons Learned

Systems tend to come with a pre-defined set of operations for built-in
constructs; the user is left to utilise third-party pre-processing tools,
for example, to provide extra-linguistic support for common repeti-
tive scenarios they encounter. Let’s consider two concrete examples.

Example (1). A large number of proofs can be discharged by
merely pattern matching on variables —this works since the case
analysis reduces the proof goal into a trivial reflexitivity obligation,
for example. The number of cases can quickly grow thereby taking
up space, which is unfortunate since the proof has very little to offer
besides verifying the claim. In such cases, a pre-process, perhaps an
“editor tactic”, could be utilised to produce the proof in an auxiliary
file, and reference it in the current file.

Example (2). Perhaps more common is the renaming of package
contents, by hand. For example, when a notion of preorder is defined
with a relation named _≤_, one may rename it and all references
to it by, say, _v_. Again, a pre-processor or editor-tactic could be
utilised; yet many simply perform the re-write by hand.

It would be desirable to allow packages to be treated as first-class
concepts that could be acted upon, in order to avoid third-party tools
that obscure generic operations and leave them out of reach for the
powerful typechecker of a dependently typed system. Below is a sum-
mary of the design patterns discussed in this chapter, using monoids
as the prototypical structure. Some patterns we did not cover, as
they will be covered in future sections.
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Figure 3.1.: PL Research is about getting free stuff: From the left-most node, we can get a lot!
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3.5.2. One-Item Checklist for a Candidate Solution

An adequate module system for dependently-typed languages should
make use of dependent-types as much as possible. As such, there
is essentially one and only one primary goal for a module system to
be considered reasonable for dependently-typed languages: Needless
distinctions should be eliminated as much as possible.

The “write once, instantiate many” attitude is well-promoted in
functional communities predominately for functions, but we will take
this approach to modules as well, beyond the features of, e.g., SML
functors. With one package declaration, one should be able to me-
chanically derive data, record, typeclass, product, sum formulations,
among many others. All operations on the generic package then
should also apply to the particular package instantiations.

This one goal for a reasonable solution has a number of important
and difficult subgoals. The resulting system should be well-defined
with a coherent semantic underpinning —possibly being a conserva-
tive extension—; it should support the elementary uses of pedestrian
module systems; the algorithms utilised need to be proven correct
with a mechanical proof assistant, considerations for efficiency cannot
be dismissed if the system is to be usable; the interface for modules
should be as minimal as possible, and, finally, a large number of ex-
isting use-cases must be rendered tersely using the resulting system
without jeopardising runtime performance in order to demonstrate
its success.
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4. Contributions of the Thesis

With the necessary background covered in Chapter 2 and motivating examples discussed in
Chapter 3, we are in a position to discuss the contributions of this thesis in a technical fashion.
The first section discusses the primary problem the thesis aims to address. The second sec-
tion outlines the objectives of this thesis and discusses the methodology used to achieve those
objectives. The third, and final, section discusses the outcomes of the thesis effort.

Since ‘grammars’ and ‘algebraic datatypes’ are just Well-founded tress, we abbreviate such
terms to ‘W-types’. Technically, every inductive datatype is expressible as a W-type —a dis-
cussion we leave for Chapter 5.
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4.1. Problem Statement

Use of dependent types to express modularity was first proposed by MacQueen1. Neverthe-
less, first-class module systems for dependently-typed languages are currently poorly supported.
Modules X consisting of functions symbols, properties, and derived results are currently pre-
sented in the form IsX : A module parameterised by function symbols and exposing derived
results possibly with further, uninstantiated, proof obligations —that is, it is of the shape ΠwΣ,
below, having parameters pi at the type level and fields pw+i at the body level.

ΠwΣ = Π p1 : τ1 • Π p2 : τ2 • · · · • Π pw : τw • Σ pw+1 : τw+1 • · · · • Σ pn : τn • body

This is understandable: Function symbols generally vary more often than proof obligations.
(This is discussed in detail in Section 3.1.3 and rendered in concrete Agda code in Section
7.2.) However, when users do not yet have the necessary parameters pi, they need to use a

1 David B. MacQueen. “Using Dependent Types to Express Modular Structure”. In: Principles of Programming
Languages, POPL 1986. 1986, pp. 277–286. doi: 10.1145/512644.512670
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curried (or bundled) form of the module and so library developers also provide a module X
which packs up the parameters as necessary fields within the module; i.e., X has the shape
Π0Σ by “pushing down” the parameters into the record body. Unfortunately, there is a whole
spectrum of modules Xw that is missing: These are the modules X where only w-many of the
original parameters are exposed with the remaining being packed-away into the module body;
i.e., having the shape ΠwΣ for 0 ≤ w ≤ n —in subsequent chapters, we refer to w as “the
waist” of a package former. It is tedious and error-prone to form all the Xw by hand; such
‘unbundling’ should be mechanically achievable from the completely bundled form X . A similar
issue happens when one wants to describe a computation using module X , then its function
symbols need to have associated syntactic counterparts —i.e., we want to interpret X as a
W-type instead of a ΠnΣ-type —; the tedium is then compounded if one considers the family
Xw. Finally, instead of combinations of Π,Σ,W, a user may need to treat a module X as an
arbitrary container type2; in which case, they will likely have to create it by hand.

This thesis aims to enhance the understanding of module systems within dependently-
typed languages by developing an in-language framework for unifying disparate pre-
sentations of what are essentially the same module. Moreover, the framework will be
constructed with practicality in mind so that the end-result is not an unusable theoretical
claim.

4.2. Objectives and Methodology

To reach a framework for the modelling of module systems for DTLs, this thesis sets a number
of objectives which are described below.

Objective 1: Modelling Module Systems

The first objective is to actually develop a framework that models module systems —grouping
mechanisms— within DTLs. The resulting framework should capture at least the expected
features:

1. Namespacing, or definitional extensions —a combination of Π- and Σ-types

2. Opaque fields, or parameters —Π-types

3. Constructors, or uninterpreted identifiers —W-types

Moreover, the resulting framework should be practical so as to be a usable experimentation-site

2 Thorsten Altenkirch et al. “Indexed containers”. In: J. Funct. Program. 25 (2015). doi: 10 . 1017 /
S095679681500009X
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for further research or immediate application —at least, in DTLs. In this thesis, we present
two declarative approaches using meta-programming and do-notation.

Objective 2: Support Unexpected Notions of Module

The second objective is to make the resulting framework extensible. Users should be able to
form new exotic3 notions of grouping mechanisms within a DTL rather than ‘stepping outside’
of it and altering its interpreter —which may be a code implementation or an abstract rewrite-
system. Ideally, users would be able to formulate arbitrary constructions from Universal Algebra
and Category Theory. For example, given a theory —a notion of grouping— one would like
to ‘glue’ two ‘instances’ along an ‘identified common interface’. More concretely, we may want
to treat some parameters as ‘the same’ and others as ‘different’ to obtain a new module that
has copies of some parameters but not others. Moreover, users should be able to mechanically
produce the necessary morphisms to make this construction into a pushout. Likewise, we would
expect products, unions, intersections, and substructures of theories —when possible, and then
to be constructed by users. In this thesis, we only want to provide a fixed set of meta-primitives
from which usual and (un)conventional notions of grouping may be defined.

Objective 3: Provide a Semantics

The third objective is to provide a concrete semantics for the resulting framework —in contrast
to the abstract generalised signatures semantics outlined earlier in this chapter. We propose
to implement the framework in the dependently-typed functional programming language Agda,
thereby automatically furnishing our syntactic constructs with semantics as Agda functions and
types. This has the pleasant side-effect of making the framework accessible to future researchers
for experimentation.

4.3. Contributions

The fulfilment of the objectives of this thesis leads to the following contributions.

1. The ability to model module systems for DTLs within DTLs.

3 “Exotic” in the sense that traditional module systems would not, or could not, support such constructions.
For instance, some systems allow users to get the “shared structure” of two modules —e.g., for the purposes
of finding a common abstract interface between them— and it does so considering names of symbols; i.e., an
name-based intersection is formed. However, different contexts necessitate names meaningful in that context
and so it would be ideal to get the shared structure by considering a user-provided association of “same
thing, but different name” —e.g., recall that a signature has “sorts” whereas a graph has “vertices”, they are
the ‘same thing, but have different names’.
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2. The ability to arbitrarily extend such systems by users at a high-level.

3. Demonstrate that there is an expressive yet minimal set of module meta-primitives which
allow common module constructions to be defined.

4. Demonstrate that relationships between modules can also be mechanically generated.

� In particular, if module B is obtained by applying a user-defined ‘variational’ to
module A, then the user could also enrich the child module B with morphisms that
describe its relationships to the parent module A.

� E.g., if B is an extension of A, then we may have a “forgetful mapping” that drops
the new components; or if B is a ‘minimal’ rendition of the theory A, then we have
a “smart constructor” that forms the rich A by only asking the few B components of
the user.

5. Demonstrate that there is a practical implementation of such a framework.

6. Solve the unbundling problem: The ability to ‘unbundle’ module fields as if they were
parameters ‘on the fly’.

� I.e., to transform a type of the shape ΠwΣ into Πw+kΣ, for k ≥ 0, such that the
resulting type is as practical and as usable as the original

7. Bring algebraic data types —i.e., termtypes or W-types— under the umbrella of grouping
mechanisms: An ADT is just a context whose symbols target the ADT ‘carrier’ and are
not otherwise interpreted.

� In particular, both an ADT and a record can be obtained from a single context
declaration.

8. Show that common data-structures are mechanically the (free) termtypes of common
modules.

� In particular, lists arise from modules modelling collections whereas nullables —the
Maybe monad— arises from modules modelling pointed structures.

� Moreover, such termtypes also have a practical interface.

9. Finally, the resulting framework is mostly type-theory agnostic: The target setting is DTLs
but we only assume the barebones as discussed in 7.6; if users drop parts of that theory,
then only some parts of the framework will no longer apply.

� For instance, in DTLs without a fixed-point functor the framework still ‘applies’,
but can no longer be used to provide arbitrary algebraic data types from contexts.
Instead, one could settle for the safer W-types, if possible.
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5. A Π-Σ-W View of Packaging Systems

The thesis is that contexts serve as a unified notion of packaging.

As such, in this chapter, in Section 5.1, we demonstrate three possible ways to define monoids
in Agda and argue their equivalence; thereby, showing that structuring mechanisms are in effect
accomplishing the same goal in different ways: They package data along with a particular usage
interface. As such, it is not unreasonable to seek out a unified notion of package —namely,
contexts. After showing how the usual record formulation of monoids is equivalent to a pure
contextual one, in Section 5.2 we verify that contexts are indeed promising by discussing how
other dependently-typed languages (DTLs) handle type abstraction1,2 —namely, contexts and
signatures. In particular, we compare the construction of a tiny graph library in Coq with its
alternative form in Agda. Unlike Coq, we want to use the contexts for algebraic datatypes
as well. As such, we review W-types in Section 5.3. Finally, in Section 5.4, we formalise our
approach for contexts serving as a generic packaging mechanism. The formalism is in dependent
type theory, whereas the next chapter provides a Lisp implementation and the chapter after
that shows an Agda implementation.

1 Robert Harper and Mark Lillibridge. “A Type-Theoretic Approach to Higher-Order Modules with Sharing”.
In: Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Portland, Oregon, USA, January 17-21, 1994. 1994, pp. 123–137. doi: 10.1145/174675.
176927

2 Xavier Leroy. “Manifest Types, Modules, and Separate Compilation”. In: Conference Record of POPL’94:
21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, Oregon,
USA, January 17-21, 1994. 1994, pp. 109–122. doi: 10.1145/174675.176926

88

https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/174675.176926


5.1. FACETS OF STRUCTURING MECHANISMS 89

Chapter Contents

5.1. Facets of Structuring Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.1. Three Ways to Define Monoids . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2. Instances and Their Use . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.3. A Fourth Definition —Contexts . . . . . . . . . . . . . . . . . . . . . . . 94

5.2. Contexts are Promising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.1. Coq Modules as Generalised Signatures . . . . . . . . . . . . . . . . . . 98

5.3. ADTs as W-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.1. When does data actually define a type? . . . . . . . . . . . . . . . . . . 105
5.3.2. W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.3. W-types generalise trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4. ΠΣW Semantics for Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6. The PackageFormer Prototype 115

5.1. Facets of Structuring Mechanisms

In this section we provide a demonstration that
with dependent-types we can show records, di-
rect dependent types, and contexts —which in
Agda may be thought of as parameters to a
module— are interdefinable. Consequently, we
observe that the structuring mechanisms pro-
vided by the current implementation of Agda
—and other DTLs— have no real differences
aside from those imposed by the language and
how they are generally utilised. More impor-
tantly, this demonstration indicates our pro-
posed direction of identifying notions of pack-
ages is on the right track.
Our example will be implementing a monoidal
interface in each format, then presenting views
between each format and that of the record
format. Furthermore, we shall also construe
each as a typeclass, thereby demonstrating
that typeclasses are, essentially, not only a se-
lected record but also a selected value of a de-

pendent type —incidentally this follows from
the previous claim that records and direct de-
pendent types are essentially the same.

Record A Σ-type in record notation

Type-
class

A “Π parameter • Σ body”-
type in record notation

Depen-
dent

Product
A Σ-type in Σ-notation

Context
/

Telescope
A Π-type in module notation
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5.1.1. Three Ways to Define Monoids

A monoid is a collection, say Carrier, along with an operation, say _#_, on it and a chosen
point, say Id, from that collection. Monoids model composition: We have a bunch of
things called Carrier —such as programs or words—, we have a way to ‘mix’ or ‘compose’
two things x and y to get a third x # y —such as forming a big program from smaller pieces
or a story from words— which has an selected ‘empty’ thing that does not affect composition
—such as the do-nothing program or the ‘empty word’ which does not add content to a story.
There are three typical ways to formalise the type of monoids: (1) As a record since a monoid
is a bunch of things together; (2) as a ‘typeclass’ (parameterised record) since we want to
specialise the carrier dynamically or to have instance search (which is an invaluable feature in,
for example, Haskell, which organises its libraries using typeclasses and instance search); (3)
as a raw unsugared Σ-type since we want to explicitly disallow the inherent module-nature of
Agda’s records. A DTL allows for redundancies like this so users can solve their problems in
ways they see best.

The type of monoids is formalised below as Monoid-Record; additionally, we have the derived
result: Id-entity can be popped-in and out as desired.

Monoids as Agda Records —The usual mathematical definition

record Monoid-Record : Set1 where
infixl 5 _#_
field
-- Interface
Carrier : Set
Id : Carrier
_#_ : Carrier → Carrier → Carrier

-- Constraints
lid : ∀{x} → (Id # x) ≡ x
rid : ∀{x} → (x # Id) ≡ x
assoc : ∀ x y z → (x # y) # z ≡ x # (y # z)

-- derived result
pop-Id-Rec : ∀ x y → x # Id # y ≡ x # y
pop-Id-Rec x y = cong (_# y) rid

open Monoid-Record {{...}} using (pop-Id-Rec)

Instance Resolution: The double curly-braces {{...}} serve to indicate that the given ar-
gument is to be found by instance resolution. For example, if we declare it : {{e : A}} → B,
then it is a B-value that is formed using an A-value; but which A-value? Unlike a function which
requires the A-value as input, it will “look up” an A-value in the list of names that are marked
for look-up by the keyword instance. If multiple A-values are marked for look-up, it is not
clear which one should be used; as such, at most one3 value can be provided for lookup and this

3 More accurately, there needs to be a unique instance that solves local constraints. Continuing with it, any
call to it will occur in a context Γ that will include inferred types and so when an A-valued is looked-up it
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value is called “the declared A-instance”, whence the name ‘instance resolution’. Recall that Agda
records automatically come with an associated module, and so the open clause, above, makes the
name pop-Id-Rec : {{M : Monoid-Record}} → (x y : Monoid-Record.Carrier M) → . . .
accessible; in-particular, this name uses instance resolution: The derived result, pop-Id-Rec,
can be invoked without having to mention a monoid, provided a unique Monoid-Record value
is declared for instance search —otherwise one must use named instances 4. We will return to
actually declaring and using instances in the next section.

Notice that Haskell’s distinction of constructs results in distinct tools: It needs both a type-class checker and
a type-checker. The former is unnecessary if typeclasses were syntactic sugar for canonical record types, thereby
having them as ordinary types. Conveniently, the reduction of distinctions not only makes it easier to learn a
language but also demands less tooling on the compiler implementers.

A value of Monoid-Record is essentially a tuple record{Carrier = C; . . .}; so the carrier
is bundled at the value level. If we were to speak of “monoids with the specific carrier X ”, we
need to bundle the carrier at the type level. This is akin to finding the carrier “dynamically, at
runtime” versus finding it “statically, at typechecking time”. 5

Monoids as ‘Typeclasses’/‘Generics’ —Parameterisation on the underlying set

record MonoidOn (Carrier : Set) : Set1 where
infixl 5 _#_
field
Id : Carrier
_#_ : Carrier → Carrier → Carrier
lid : ∀{x} → (Id # x) ≡ x
rid : ∀{x} → (x # Id) ≡ x
assoc : ∀ x y z → (x # y) # z ≡ x # (y # z)

pop-Id-Tc : ∀ x y → x # Id # y ≡ x # y
pop-Id-Tc x y = cong (_# y) rid

open MonoidOn {{...}} using (pop-Id-Tc)

Alternatively, in a DTL we may encode the monoidal interface using dependent products
directly rather than use the syntactic sugar of records. Recall that Σ a : A • B a denotes
the type of pairs (a , b) where a : A and b : B a —i.e., a record consisting of two fields—

suffices to find a unique value e such that Γ ` e : A. More concretely, suppose A = N × N, B = N and it
{{(x , y)}} = x and we declared two Numbers for instance search, p = (0 , 10) and q = (1, 14). Then
in the call site go : it ≡ 1; go = refl, the use of refl means both sides of the equality must be identical
and so it {{e}} must have the e chosen to make the equality true, but only q does so and so it is chosen.
However, if instead we had defined p = (1 , 10), then both p and q could be used and so there is no local
solution; prompting Agda to produce an error.

4 Wolfram Kahl and Jan Scheffczyk. “Named Instances for Haskell Type Classes”. In: Proc. Haskell Workshop
2001. Ed. by Ralf Hinze. Technical Report UU-CS-2001-23. available from http://www.cs.ox.ac.uk/ralf.
hinze/hw2001.html. Utrecht University, 2001, pp. 71–99

5 An accessible introduction to semantics and typeclasses, using a monoid of functions as the running example,
can be found in: Elliott. “Denotational design with type class morphisms”. In: 2016. url: http://conal.net/
papers/type-class-morphisms/type-class-morphisms-long.pdf.
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and it may be thought of as a constructive analogue to the classical set comprehension
{x : A | B x}.

Monoids as Dependent Sums —Using none of Agda’s built-in syntactic sugar

-- Type alias
Monoid-Σ : Set1
Monoid-Σ = Σ Carrier : Set

• Σ Id : Carrier
• Σ _#_ : (Carrier → Carrier → Carrier)
• Σ lid : (∀{x} → Id # x ≡ x)
• Σ rid : (∀{x} → x # Id ≡ x)
• (∀ x y z → (x # y) # z ≡ x # (y # z))

pop-Id-Σ : ∀ {{M : Monoid-Σ}}
(let Id = proj1 (proj2 M))
(let _#_ = proj1 (proj2 (proj2 M)))

→ ∀ (x y : proj1 M) → (x # Id) # y ≡ x # y
pop-Id-Σ {{M}} x y = cong (_# y) (rid {x})

where _#_ = proj1 (proj2 (proj2 M))
rid = proj1 (proj2 (proj2 (proj2 (proj2 M))))

Observe the lack of informational difference between the presentations, yet there is a Utility
Difference: Records give us the power to name our projections directly with possibly meaningful
names. Of course this could be achieved indirectly by declaring extra functions; e.g.,

Agda

Carriert : Monoid-Σ → Set
Carriert = proj1

We will refrain from creating such boiler plate —that is, records allow us to omit such me-
chanical boilerplate.

Of the renditions thus far, the Σ rendering makes it clear that a monoid could have any
subpart as a record with the rest being dependent upon said record. For example, if we had a
semigroup6 type, we could have declared a monoid to be a semigroup with additional pieces:

Monoid-Σ = Σ S : Semigroup • Σ Id : Semigroup.Carrier S • · · ·

There are a large number of hyper-graphs indicating how monoidal interfaces could be built
from their parts, we have only presented a stratified view for brevity. In particular, Monoid-Σ
is the extreme unbundled version, whereas Monoid-Record is the other extreme, and there is a
large spectrum in between —all of which are somehow isomorphic7; e.g., Monoid-Record ∼= Σ

6 A semigroup is like a monoid except it does not have the Id element.
7 For this reason —namely that records are existential closures of a typeclasses— typeclasses are also known
as “constraints, or predicates, on types”.
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C : Set • MonoidOn C. Our envisioned system would be able to derive any such view at will8
and so programs may be written according to one view, but easily repurposed for other view
with little human intervention.

5.1.2. Instances and Their Use

Instances of the monoid types are declared by providing implementations for the necessary
fields. Moreover, as mentioned earlier, to support instance search, we place the declarations in
an instance clause.

Instance Declarations

instance
N-Rec : Monoid-Record
N-Rec = record { Carrier = N ; Id = 0 ; _#_ = _+_

; lid = +-identityl _ ; rid = +-identityr _
; assoc = +-assoc }

N-Tc : MonoidOn N
N-Tc = record { Id = 0; _#_ = _+_ ; lid = +-identityl _

; rid = +-identityr _ ; assoc = +-assoc }

N-Σ : Monoid-Σ
N-Σ = N , 0 , _+_ , +-identityl _ , +-identityr _ , +-assoc

No Monoids Mentioned at Use Sites

N-pop-0-Rec N-pop-0-Tc N-pop-0-Σ : (x y : N) → x + 0 + y ≡ x + y

N-pop-0-Rec = pop-Id-Rec
N-pop-0-Tc = pop-Id-Tc
N-pop-0-Σ = pop-Id-Σ

With a change in perspective, we could treat the pop-0 implementations as a form of poly-
morphism: The result is independent of the particular packaging mechanism; record, typeclass,
Σ, it does not matter.

Finally, since we have already discussed the relationship between Monoid-Record and MonoidOn,
let us exhibit views between the Σ form and the record form.

8 Egidio Astesiano et al. “CASL: the Common Algebraic Specification Language”. In: 286.2 (2002), pp. 153–
196. doi: 10.1016/S0304-3975(01)00368-1
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Monoid-Record and Monoid-Σ represent the same data

{- Essentially moved from record{· · · } to product listing -}
from : Monoid-Record → Monoid-Σ
from M = let open Monoid-Record M

in Carrier , Id , _#_ , lid , rid , assoc

{- Organise a tuple componenets as implementing named fields -}
to : Monoid-Σ → Monoid-Record
to (c , id , op , lid , rid , assoc) = record { Carrier = c

; Id = id
; _#_ = op
; lid = lid
; rid = rid
; assoc = assoc
}

Furthermore, by definition chasing, refl-exivity, these operations are seen to be inverse of
each other. Hence we have two faithful non-lossy protocols for reshaping our grouped data.

5.1.3. A Fourth Definition —Contexts

In our final presentation, we construe the grouping of the monoidal interface as a sequence of
variable : type declarations —i.e., a Context or ‘telescope’. Since these are not top level items
by themselves, in Agda, we take a purely syntactic route by positioning them in a module
declaration as follows.

Monoids as Telescopes

module Monoid-Telescope-User
(Carrier : Set)
(Id : Carrier)
(_#_ : Carrier → Carrier → Carrier)
(lid : ∀{x} → Id # x ≡ x)
(rid : ∀{x} → x # Id ≡ x)
(assoc : ∀ x y z → (x # y) # z ≡ x # (y # z))
where

pop-Id-Tel : ∀(x y : Carrier) → (x # Id) # y ≡ x # y
pop-Id-Tel x y = cong (_# y) (rid {x})

“Squint and They’re The Same:” Notice that this is nothing more than the named fields of
Monoid-Record but not9 bundled. Additionally, if we insert a Σ before each name we essentially
regain the Monoid-Σ formulation. It seems contexts, at least superficially, are a nice middle
ground between the previous two formulations. For instance, if we syntactically, visually, move

9 Records let us put things in a bag and run around with them, whereas telescopes amount to us running
around with all of our things in our hands —hoping we don’t drop (forget) any of them.
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the Carrier : Set declaration one line above, the resulting setup looks eerily similar to the
typeclass formulation of records.

As promised earlier, we can regard the above telescope as a record:

Agda

{- No more running around with things in our hands. -}
{- Place the telescope parameters into a nice bag to hold on to. -}
record-from-telescope : Monoid-Record
record-from-telescope
= record { Carrier = Carrier

; Id = Id
; _#_ = _#_
; lid = lid
; rid = rid
; assoc = assoc
}

The structuring mechanism module is not a first class citizen in Agda. As such, to obtain the
converse view, we work in a parameterised module.

Agda

module record-to-telescope (M : Monoid-Record) where

-- Treat record type as if it were a parameterised module type,
-- instantiated with M.
open Monoid-Record M

-- Actually using M as a telescope
open Monoid-Telescope-User Carrier Id _#_ lid rid assoc

Notice that we just listed the components out —rather reminiscent of the formulation Monoid-Σ.
This observation only increases confidence in our thesis that there is no real distinctions of pack-
aging mechanisms in DTLs. Similarity, instantiating the telescope approach to a natural number
monoid is nothing more than listing the required components.

Agda

open Monoid-Telescope-User N 0 _+_ (+-identityl _) (+-identityr _) +-assoc

This instantiation is nearly the same as the definition of N-Σ; with the primary syntactical
difference being that this form had its arguments separated by spaces rather than commas!
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Agda

N-pop-Tel : ∀(x y : N) → x + 0 + y ≡ x + y
N-pop-Tel = pop-Id-Tel

It is interesting to note that this presentation is akin to that of class-es in C#/Java lan-
guages: The interface is declared in one place, monolithic-ly, as well as all derived operations
there; if we want additional operations, we create another module that takes that given module
as an argument in the same way we create a class that inherits from that given class.

Demonstrating the interdefinablity of different notions of packaging cements our thesis that
it is essentially utility that distinguishes packages more than anything else —just as data lan-
guage’s words (constructors) have their meanings determined by utility. Consequently, explicit
distinctions have lead to a duplication of work where the same structure is formalised using
different notions of packaging. In Chapter 6 we will show how to avoid duplication by coding
against a particular ‘package former’ rather than a particular variation thereof —this is akin to
a type former.

5.2. Contexts are Promising

The current implementation of the Agda language10,11 has a notion of second-class modules
which may contain sub-modules along with declarations and definitions of first-class citizens.
The intimate relationship between records and modules is perhaps best exemplified here since
the current implementation provides a declaration to construe a record as if it were a module
—as demonstrated in the previous section. This observation is not specific to Agda, which is
herein only used as a presentation language. Indeed, other DTLs (dependently-typed languages)
reassure our hypothesis; the existence of a unified notion of package:

� The centrality of contexts

TheBeluga language has the distinctive feature of direct support for first-class contexts12.
A term t(x) may have free variables and so whether it is well-formed, or what its type
could be, depends on the types of its free variables, necessitating one to either declare them
before hand or to write, in Beluga, [ x : T |- t(x) ] for example. As argued in the
previous section, contexts are essentially dependent sums. In contrast to Beluga, Isabelle

10 Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda— A Functional Language with Dependent
Types”. In: Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17–20, 2009. Proceedings. 2009, pp. 73–78. doi: 10.1007/978-3-642-03359-9_6

11 Ulf Norell. “Towards a Practical Programming Language Based on Dependent Type Theory”. See also
http://wiki.portal.chalmers.se/agda/pmwiki.php. PhD thesis. Dept. Comp. Sci. and Eng., Chalmers Univ. of
Technology, Sept. 2007

12 Brigitte Pientka. “Beluga: Programming with Dependent Types, Contextual Data, and Contexts”. In: Func-
tional and Logic Programming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-21,
2010. Proceedings. 2010, pp. 1–12. doi: 10.1007/978-3-642-12251-4_1
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is a full-featured language and logical framework that also provides support for named
contexts in the form of ‘locales’13,14; however, it is not a dependently-typed language.

� Signatures as an underlying formalism

Twelf15 is a logic programming language implementing Edinburgh’s Logical
Framework16,17,18 and has been used to prove safety properties of ‘real languages’ such
as SML. A notable practical module system19 for Twelf has been implemented using
signatures and signature morphisms.

� Packages (modules) have their own useful language

The current implementation of Coq20,21,22,23 provides a “copy and paste” operation for
modules using the include keyword. Consequently it provides a number of module combi-
nators, such as <+ which is the infix form of module inclusion24. Since Coq module types
are essentially contexts, the module type X <+ Y <+ Z is really the catenation of contexts,
where later items may depend on former items. The Maude25,26 framework contains a
similar yet more comprehensive algebra of modules and how they work with Maude the-

13 Clemens Ballarin. “Locales and Locale Expressions in Isabelle/Isar”. In: Types for Proofs and Programs,
International Workshop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers.
2003, pp. 34–50. doi: 10.1007/978-3-540-24849-1_3

14 Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. “Locales - A Sectioning Concept for Isabelle”.
In: Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs’99, Nice, France,
September, 1999, Proceedings. 1999, pp. 149–166. doi: 10.1007/3-540-48256-3_11

15 Frank Pfenning and The Twelf Team. The Twelf Project. 2015. url: http://twelf.org/wiki/Main_Page
(visited on 10/19/2018)

16 Christian Urban, James Cheney, and Stefan Berghofer. Mechanizing the Metatheory of LF. 2008. arXiv:
0804.1667v3 [cs.LO]

17 Florian Rabe. “Representing Isabelle in LF”. in: Electronic Proceedings in Theoretical Computer Science 34
(Sept. 2010), pp. 85–99. issn: 2075-2180. doi: 10.4204/eptcs.34.8

18 Aaron Stump and David L. Dill. “Faster Proof Checking in the Edinburgh Logical Framework”. In: Automated
Deduction — CADE 2002. 2002, pp. 392–407. doi: 10.1007/3-540-45620-1_32

19 Florian Rabe and Carsten Schürmann. “A practical module system for LF”. in: Proceedings of the Fourth
International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP ’09,
McGill University, Montreal, Canada, August 2, 2009. 2009, pp. 40–48. doi: 10.1145/1577824.1577831

20 Bruno Barras. “Sets in Coq, Coq in Sets”. In: J. Formaliz. Reason. 3.1 (2010), pp. 29–48. doi: 10.6092/issn.
1972-5787/1695

21 Bruno Barras and Benjamin Grégoire. “On the Role of Type Decorations in the Calculus of Inductive
Constructions”. In: Computer Science Logic, Proc. 19th International Workshop, CSL 2005. 2005, pp. 151–
166. doi: 10.1007/11538363_12

22 Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program Development: Coq’Art The Cal-
culus of Inductive Constructions. 1st. Springer Publishing Company, Incorporated, 2010. isbn: 3642058809

23 Jason Gross, Adam Chlipala, and David I. Spivak. Experience Implementing a Performant Category-Theory
Library in Coq. 2014. arXiv: 1401.7694v2 [math.CT]

24 The Coq Development Team. The Coq Proof Assistant, version 8.8.0. Apr. 2018. doi: 10.5281/zenodo.
1219885

25 Manuel Clavel et al., eds. All About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic. Vol. 4350. LNCS. Springer, 2007. isbn: 978-3-540-71940-3.
doi: 10.1007/978-3-540-71999-1

26 Francisco Durán and José Meseguer. “Maude’s module algebra”. In: Sci. Comput. Program. 66.2 (2007),
pp. 125–153. doi: 10.1016/j.scico.2006.07.002
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ories.

� Parameters of records are actually their fields

The Arend proof assistant27,28 is based on intuitionistic logic, like Agda, but is otherwise
intended for theorem proving in homotopy type theory29. Arend does not distinguish
between record parameters and record fields (as such, fields can be specialised dynamically;
i.e., Π and λ are essentially identified, but we will form a combinator ‘Π→λ’ in Chapter
7). This is the exact insight that we arrived at, [10], independently at around the same
time that the first version of Arend was released.

Arend provides a built-in solution, whereas we show how such a solution to the unbundling
problem can be formed as a reflection library in a DTL. Moreover, our target setting is
for both proving and programming.

It is important to consider other languages so as to how see their communities treat module
systems and what uses cases they are interested in: It is important to draw wisdom from many
different places; if you take it from only one place, it becomes rigid and stale30. In the next
section, we shall see a glimpse of how the Coq community works with packages, and, to make
the discussion accessible, we shall provide Agda translations of Coq code.

5.2.1. Coq Modules as Generalised Signatures

Module Systems parameterise programs, proofs, and tactics over structures. In this section,
we shall form a library of simple graphs31 to showcase how Coq’s approach to packages is
essentially in the same spirit32 as the proposed definition of generalised signatures: A sequence
of name-type-definition tuples where the definition may be omitted. To make the Coq accessible
to readers, we will provide an Agda translation that only uses the record construct in Agda
—completely ignoring the data and module forms which would otherwise be more natural

27 JetBrains Research. Arend Theorem Prover. 2020. url: https://arend-lang.github.io/
28 Valery Isaev. “Models of Homotopy Type Theory with an Interval Type”. In: CoRR abs/2004.14195 (2020).

arXiv: 2004.14195. url: https://arxiv.org/abs/2004.14195
29 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. In-

stitute for Advanced Study: https://homotopytypetheory.org/book, 2013
30 Michael Dante DiMartino and Bryan Konietzko. Avatar, the last airbender. Premiered on Nickelodeon. 2005
31 A graph models “lines and dots on a page”; i.e., it is a tuple (V, E, tgt, src) where sets V and E denote

the dots (‘vertices’) and lines (‘edges’), respectively, and the functions src, tgt : E → V assign a ‘source’
and a ‘target’ dot (vertex) to each line (edge); so we do not have any “dangling lines”: All lines on the page
must be between drawn dots. In a simple graph, every edge is determine by its source and target points, so
we can instead present a graph as a set V and a dependent-type E : V × V → Type where E x y denotes
the collection of edges starting at x and ending at y. The code fragments of this section use the second form,
for brevity.

32 With this observation, it is only natural to wonder why Coq is not used as the presentation language in-place
of Agda. We could rationalise our choice with technical attacks against Coq —e.g., tactics are ‘evil’ since
they render the concept of ‘proof’ as secondary [4, 69] — but they would not reflect reality: Coq is a delight
to use, but Agda’s community-adopted Unicode support and our own experiences with it biased our choice.
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in certain scenarios below— in order to demonstrate that all packaging concepts essentially
coincide in a DTL.

Along the way, we refer to aspects of Agda that we found convenient and desirable that
we chose it as a presentation language instead of Coq and other equally appropriate
DTLs.

In Coq, a Module Type contains the signature of the abstract structure to work from; it lists
the Parameter and Axiom values we want to use, possibly along with notation declaration to
make the syntax easier. ( The naming in the following module, Graph, is slightly inappropriate
since connectedness is generally via paths not edges —which are chosen for brevity. )

Graphs —Coq

Module Type Graph.
Parameter Vertex : Type.
Parameter Edges : Vertex -> Vertex -> Prop.

(* Obtain convenient syntactic sugar. *)
Infix "<=" := Edges : order_scope.
Open Scope order_scope.

Axiom loops : forall e, e <= e.
Parameter decidable : forall x y, {x <= y} + {not (x <= y)}.
Parameter connected : forall x y, {x <= y} + {y <= x}.

End Graph.

Graphs —Agda

record Graph : Set1 where
field

Vertex : Set
_−→_ : Vertex → Vertex → Set
loops : ∀ {e} → e −→ e
decidable : ∀ x y → Dec (x −→ y)
connected : ∀ x y → (x −→ y) ] (y −→ x)

Notice that due to Agda’s support for mixfix Unicode lexemes, we are able to use the evocative
arrow notation _−→_ for edges directly. In contrast, Coq uses ASCII order notation after
the type of edges is declared. In contrast to Agda, conventional Coq distinguishes between
value parameters and proofs, thereby using the keywords Parameter and Axiom to, essentially,
accomplish the same thing.

In Coq, to form an instance of the graph module type, we define a module that satisfies the
module type signature. The _<:_ declaration requires us to have definitions and theorems with
the same names and types as those listed in the module type’s signature. In contrast, the Agda
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form below explicitly ties the signature’s named fields with their implementations, rather than
inferring it.

Birds’ Eye View

The following two snippets only serve to produce instances of graphs that can be used in
subsequent snippets, as such their details are mostly irrelevant. They are present here for
the sake of completeness and we rely on the reader to accept them for their overarching
purpose —namely, to demonstrate how Coq’s Module Type’s are close in spirit to the
previously discussed notion of generalised signatures. For the curious reader, the next
Coq snippet is annotated with comments explaining the tactics.

Booleans are Graphs —Coq

Module BoolGraph <: Graph.
Definition Vertex := bool.
Definition Edges := fun x => fun y => leb x y.

Infix "<=" := Edges : order_scope.
Open Scope order_scope.

Theorem loops: forall x : Vertex, x <= x.
Proof.
intros; unfold Edges, leb; destruct x; tauto.
Qed.

Theorem decidable: forall x y, {Edges x y} + {not (Edges x y)}.
Proof.

intros; unfold Edges, leb; destruct x, y.
all: (right; discriminate) || (left; trivial).

Qed.

Theorem connected: forall x y, {Edges x y} + {Edges y x}.
Proof.

intros; unfold Edges, leb. destruct x, y.
all: (right; trivial; fail) || left; trivial.

Qed.
End BoolGraph.

Booleans are Graphs —Agda

BoolGraph : Graph
BoolGraph = record

{ Vertex = Bool
; _−→_ = leb
; loops = b≤b
-- I only did the case analysis, the rest was

“auto”.↪→
; decidable = λ{ true true → yes b≤b

; true false → no (λ ())
; false true → yes f≤t
; false false → yes b≤b }

-- I only did the case analysis, the rest was
“auto”.↪→

; connected = λ{ true true → inj1 b≤b
; true false → inj2 f≤t
; false true → inj1 f≤t
; false false → inj1 b≤b }

}

We are now in a position to write a “module functor”: A module that takes some Module
Type parameters and results in a module that is inferred from the definitions and parameters in
the new module; i.e., a parameterised module. E.g., here is a module that defines a minimum
function.
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Minimisation as a function on modules —Coq

Module Min (G : Graph).
Import G. (* I.e., open it so we can use names in unquantifed form. *)
Definition min a b : Vertex := if (decidable a b) then a else b.
Theorem case_analysis: forall P : Vertex -> Type, forall x y,

(x <= y -> P x) -> (y <= x -> P y) -> P (min x y).
Proof.
intros. (* P, x, y, and hypothesises H0, H1 now in scope*)
(* Goal: P (min x y) *)
unfold min. (* Rewrite “min” according to its definition. *)
(* Goal: P (if decidable x y then x else y) *)
destruct (decidable x y). (* Case on the result of decidable *)
(* Subgoal 1: P x ---along with new hypothesis H3 : x ≤ y *)
tauto. (* i.e., modus ponens using H1 and H3 *)
(* Subgoal 2: P y ---along with new hypothesis H3 : ¬ x ≤ y *)
destruct (connected x y).
(* Subgoal 2.1: P y ---along with new hypothesis H4 : x ≤ y *)
absurd (x <= y); assumption.
(* Subgoal 2.2: P y ---along with new hypothesis H4 : y ≤ x *)
tauto. (* i.e., modus ponens using H2 and H4 *)

Qed.
End Min.

Min is a function-on-modules; the input type is a Graph value and the output module’s type
is inferred to be:

Type of module ‘Min’

Module Type (G : Graph).
Import G.
Definition min a b : Vertex := if (decidable a b) then a else b.
Parameter case_analysis: forall P : Vertex -> Type, forall x y,

(x <= y -> P x) -> (y <= x -> P y) -> P (min x y).
End Min.

In contrast, Agda has no notion of signature, and so the declaration below only serves as
a namespacing mechanism that has a parameter over-which new programs and proofs are ab-
stracted —the primary purpose of module systems mentioned earlier. Notice that the Agda
record below has no fields.
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Minimisation as a function on modules —Agda

record Min (G : Graph) : Set where
open Graph G

min : Vertex → Vertex → Vertex
min x y with decidable x y
...| yes _ = x
...| no _ = y

case-analysis : ∀ {P : Vertex → Set} {x y}
→ (x −→ y → P x)
→ (y −→ x → P y)
→ P (min x y)

case-analysis {P} {x} {y} H0 H1 with decidable x y | connected x y
... | yes x−→y | _ = H0 x−→y
... | no ¬x−→y | inj1 x−→y = ⊥-elim (¬x−→y x−→y)
... | no ¬x−→y | inj2 y−→x = H1 y−→x

open Min

Let’s apply the so called module functor. The min function, as shown in the comment below,
now specialises to the carrier of the Boolean graph.

Applying module-to-module functions (part I) —Coq

Module Conjunction := Min BoolGraph.
Export Conjunction.
Print min.
(*
min =
fun a b : BoolGraph.Vertex => if BoolGraph.decidable a b then a else b

: BoolGraph.Vertex -> BoolGraph.Vertex -> BoolGraph.Vertex
*)

In the Agda setting, we can prove the aforementioned observation: The module is for name-
spacing only and so it has no non-trivial implementations.

Applying module-to-module functions (part I) —Agda

Conjunction = Min BoolGraph

uep : ∀ (p q : Conjunction) → p ≡ q
uep record {} record {} = refl

{- “min I” is the specialisation of “min” to the Boolean graph -}
_ : Bool → Bool → Bool
_ = min I where I : Conjunction; I = record {}

Unlike the previous functor, which had its return type inferred, we may explicitly declare a
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return type. E.g., the following functor is a Graph → Graph function.

A module-to-module function —Coq

Module Dual (G : Graph) <: Graph.
Definition Vertex := G.Vertex.
Definition Edges x y : Prop := G.Edges y x.
Definition loops := G.loops.
Infix "<=" := Edges : order_scope.
Open Scope order_scope.
Theorem decidable: forall x y, {x <= y} + {not (x <= y)}.
Proof.
unfold Edges. pose (H := G.decidable). auto.

Qed.
Theorem connected: forall x y, {Edges x y} + {Edges y x}.
Proof.
unfold Edges. pose (H := G.connected). auto.

Qed.
End Dual.

Agda makes it clearer that this is a module-to-module function.

A module-to-module function —Agda

Dual : Graph → Graph
Dual G = let open Graph G in record

{ Vertex = Vertex
; _−→_ = λ x y → y −→ x
; loops = loops
; decidable = λ x y → decidable y x
; connected = λ x y → connected y x
}

An example use would be renaming “min 7→ max” —e.g., to obtain meets from joins.
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Applying module-to-module functions (part II) —Coq

Module Max (G : Graph).
(* Module applications cannot be chained;

intermediate modules must be named. *)
Module DualG := Dual G.
Module Flipped := Min DualG.
Import G.
Definition max := Flipped.min.
Definition max_case_analysis:

forall P : Vertex -> Type, forall x y,
(y <= x -> P x) -> (x <= y -> P y) -> P (max x y)
:= Flipped.case_analysis.

End Max.

Applying module-to-module functions (part II) —Agda

record Max (G : Graph) : Set where
open Graph G
private

Flipped = Min (Dual G)
I : Flipped
I = record {}

max : Vertex → Vertex → Vertex
max = min I

max-case-analysis : ∀ {P : Vertex → Set} {x y}
→ (y −→ x → P x)
→ (x −→ y → P y)
→ P (max x y)

max-case-analysis = case-analysis I

Here is a table summarising the two languages’ features, along with JavaScript as a position
of reference.

Signature Structure
Coq ≈ module type ≈ module
Agda ≈ record type ≈ record value
JavaScript ≈ prototype ≈ JSON object

Signatures and structures in Coq, Agda, and JavaScript

It is perhaps seen most easily in the last entry in the table, that modules and modules types
are essentially the same thing: They are just partially defined record types. Again there is a
difference in the usage intent:
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Concept Intent
Module types Any name may be opaque, undefined.
Modules All names must be fully defined.

Modules and module types only differ in intended utility

5.3. ADTs as W-types

Earlier in the chapter we demonstrated the interdefinability of various structuring mechanisms;
yet, there are times when it would be prudent to have the syntax of a concept (such as monoid)
in hand so as to, say, generate terms of that type or to simplify them as follows.

A syntax for Monoid terms

-- Monoid terms over carrier C
data M (C : Set) : Set where
inj : C → M C
Id : M C
_#_ : M C → M C → M C

-- If x and y are in simplified form, then so is x #′ y
_#′_ : {C : Set} → M C → M C → M C
Id #′ y = y
x #′ Id = x
x #′ y = x # y

-- Discard as much Id’s as possible
simplify : {C : Set} → M C → M C
simplify (a # b) = simplify a #′ simplify b
simplify it = it

popId : ∀ {C} {x y : M C} → simplify (x # (Id # y)) ≡ simplify (x # y)
popId = refl

Records and typeclasses have a similar shape — as quantifiers Qx : A • B x — and if we
want to interpret contexts as grammars, we should use a similar shape as well. Discussing such
a shape is the goal of this section.

5.3.1. When does data actually define a type?

Grammars, data declarations, describe the smallest language that has the constructors as words.
What if no such language exists? Indeed, not all grammars are ‘sensible’ in that they define
a language. For instance, One below is a language of only one word, MakeOne; whereas None
is a language with no words, since to form a phrase MakeNone n first requires we form n,
which leads to infinite regress, and so there are no finite words. Even worse, What describes no
language at all —which Agda barks as being not strictly positive.
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Describing Possibly Non-Existent Languages

data One : Set where
MakeOne : One

data None : Set where
MakeNone : None → None

data What : Set where
MakeWhat : (What → What) → What

Recall that (A→ B) = Π_ : A • B and, when A is finite , (A→ B) ∼= (Π_ : A • B) ∼=
B|A|. As such, a function What → What, above, is What-many arguments, each of type What.
But how many arguments is that exactly? We need to actually know the type What, which is
the type being defined. As such, the above data does not actually define any type.

(More accurately, even though Agda complains about What, the type actually exists: Data
declarations are least fixed-points of the induced polynomial function and so What is the least
solution to the equation X ∼= (X → X), which has solution being the unit type 1. If we had
additionally requested What to have a constant as well, say, It : What, then we would need a
solution to X ∼= (X → X) + X, which cannot have a solution since the right side is strictly
greater than the left side —i.e., sums contain their operands. Note that 1 is not a solution since
the right side would require it to have two elements; likewise 0 is not a solution since the right
side would require it to have one element —namely, the identity of 0→ 0.)

5.3.2. W

How do we know whether a grammar describes a language that actually exists? Suppose T is
defined by n constructors Ci : τ i(T) → T, which may mention T in their payload τ i(T). Then
we have a type operation F X = (Σ i : Fin n • τ i(X)), where Fin n is the type of natural
numbers less than n. The type T describes a language X that contains all the constructors; i.e.,
“it can distinguish the constructors, along with their payloads”; i.e., there is a method F X → X
that shows how the descriptive constructors F X can be viewed as values of X. More concretely,
the type One above has one constructor MakeOne which takes an empty tuple of arguments,
denoted 1 = { () } , and so it has F X ∼= 1 and so (F X → X) ∼= (1 → X) ∼= X; whence
any non-empty collection X is described by F; but the smallest such language is a singleton
language with one element that we call MakeOne. ADTs describe the smallest languages
generated by their constructors.
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Important Observation: Terms-in-context ≈ Terms-in-ADT

Recall that we earlier observed that Π and Σ could be thought of as way to interpret a
contextual judgement; so too a judgement Γ ` t : τ could be interpreted as a term t : τ
in the presence of the ADT described by some F which is obtained by treating all (or a
select set of) names of Γ as constructors.

Indeed,W-types (introduced below) are essentially generalised signatures: W A B has A
as ‘function symbols’ and each symbol f : A has ‘argument type’ B f. W-types are not
generalised signatures since they do not support optional definitions; which is a minor
technicality: If t has the associated definition d, then we may use “ let t = d in W
· · · ” and repeated let clauses solve the issue of optional definitions.

Notice that we have again encountered the problem of a syntax that is “too powerful” for
the concepts it denotes: We can declare grammars (ADTs) that do not describe any language.
Since a grammar consists of a number of disjoint (“Σ”) constructor clauses that take a tuple
(“Π”) of arguments, it suffices to consider when “polynomial”33 descriptions
F X = (Σ a : A • Π b : B a • X) actually describe a language. That is, when is there a
function FX → X and what is the smallest X with such a function? The values of FX are
pairs (a, f) where a : A and f : B a→ X; so we may take the collection of only such pairs to be
the language described by F, and it is thus the smallest such collection. This language is called
a W-type.

Descriptions of Languages That Necessarily Exist

(W a : A • B a) is the type of well-founded trees with node “labels from A” and
each node having “B a many possible children trees”. That is, it is the (inductive)
language/type whose constructors are indexed by elements a : A, each with arity B a.

W-types in Agda

-- The type of trees with B-branching degrees
data W (A : Set) (B : A → Set) : Set where
sup : (a : A) → (B a → W A B) → W A B

In particular, W i : Fin n • B i is essentially the data declaration of n constructors
where the i-th constructor takes arguments of ‘shape’ B i.
E.g., in Agda syntax, N ∼= W (Fin 2) λ{zero → Fin 0; (suc zero) → Fin 1}.

Categorically speaking, polynomial functors —i.e., type formers of the shape F X = Σ a :
A • Π b : B a • X, “sums of products” or a “disjoint union of possible constructors and their
arguments”— have “initial algebras” named W = (W a : A • B a), which are the smallest
languages described by F. That is,W-types are the initial algebras of polynomial functors; that
is, F has an initial algebra sup : F W → W. Moreover, every strictly positive type operator

33 Using exponential notation QP = (P → Q) along with subscript notation yields FX = Σa:AX
B a, which is

the shape of a polynomial. These notations and names are standard.
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can34,35,36,37 be expressed in the same shape as F and so they all have an initial algebra.
Inductive families arise as indexedW-types which are initial algebras for dependent polynomial
functors, and Gambino et al38 have shown them to be constructible from non-dependent ones
in locally cartesian closed categories. That is, indexed W-types can be obtained from ordinary
W-types.

5.3.3. W-types generalise trees

To further understand W-types —and to justify the name sup!—, consider the type Rose A of
“multi-branching trees with leaves from A”. W-types generalise the idea of rose trees: Each list
of children trees xs : List (Rose A) can be equivalently39 replaced by a tabulation cs : Fin
(length xs) → Rose A that tells the i-th child of xs. That is, W-types are trees with
branching degrees (B a)a:A.

Rose trees

data Rose (A : Set) : Set where
Node : (parent : A) (children : List (Rose A)) → Rose A

example : Rose N
example = MkRose 0 (MkRose 1 (MkRose 3 [] :: [])

:: MkRose 2 (MkRose 4 [] :: []) :: [])

The example tree is shown diagrammatically below.

We can easily recast the Rose type and the example as aW-type. In particular, notice that in
the construction of example’, each node construction sup (a, n) cs indicates that the label
34 Peter Dybjer. “Representing inductively defined sets by wellorderings in Martin-Löf’s type theory”. In:

Theoretical Computer Science 176.1-2 (Apr. 1997), pp. 329–335. issn: 0304-3975. doi: 10.1016/s0304-
3975(96)00145-4

35 Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. “Representing Nested Inductive Types Using
W-Types”. In: Automata, Languages and Programming: 31st International Colloquium, ICALP 2004,
Turku, Finland, July 12-16, 2004. Proceedings. 2004, pp. 59–71. doi: 10.1007/978-3-540-27836-8_8

36 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. In-
stitute for Advanced Study: https://homotopytypetheory.org/book, 2013

37 Jacopo Emmenegger. W-types in setoids. 2018. arXiv: 1809.02375v2 [math.LO]
38 Nicola Gambino and Martin Hyland. “Wellfounded Trees and Dependent Polynomial Functors”. In: Types

for Proofs and Programs (2004), pp. 210–225. issn: 1611-3349. doi: 10.1007/978-3-540-24849-1_14
39 Since every functon Fin n → X can be ‘tabulated’ as a List X value of length n

—i.e., (Σ xs : List A • length xs ≡ n) ∼= (Fin n → A)— we have that Rose’ A ∼= Rose A.
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is n and the number of children the node has is n. That is, the choice of using lists or vectors
in the design of Rose is forced to being (implicitly and essentially) vectors in the construction
of Rose’.

Rose trees

Rose' : Set → Set
Rose' A = W (A × N) λ{ (a , ]children) → Fin ]children }

example' : Rose' N
example' = sup ((0 , 2))

λ { zero → sup (1 , 1) λ {zero → sup (3 , 0) λ ()}
; (suc zero) → sup (2 , 1) λ {zero → sup (4 , 0) λ ()}}

Similar to rose trees, W a : Fin n • Fin 0 is an enumerated type having n constants,
such as the Booleans. That is, if B a is empty for all a, then trees in W a : A • B a have no
subtrees, and hence have ‘height’ 0.

The height of a tree, is an ordinal, and is defined to be the supremum40 —i.e., the least upper
bound— of the height of its elements:

height (sup a child) = sup
i:B a

(height (child i) + 1)

This may be a reason why the only constructor of W-types is named sup. Indeed, we may
interpret Wa : A • B a as the least upper bound of all languages (ordered by language
inclusion) that contain terms “ f(args) ” where f : A is a ‘function symbol’ and args : B f
is an ‘appropriately-shaped argument’ —e.g., concrete terms “ f(t0, t1, . . ., tn) ” are an
instance of this idea, as witnessed by sup f childf with childf : Fin (arity f) → Term defined by
childf (i) = ti.

In contrast,W a : A • Fin n is a data type with A-many clauses that each make n recursive
calls; this is an empty type since every construction requires n many existing constructions —
however, it is still a type, unlike What above. That is41, if B a is non-empty for all a, then W
a : A • B a is empty, since in order to form an element sup a c, we need to have defined
before-hand c(b) : (W a : A • B a) for each one of the elements b of B a.

40 The supremum of the empty set of natural numbers is, by definition, 0.

sup ∅ = 0

Hence, if any (child) tree is empty, then its height is 0.
41 A W-type is empty precisely when it has no nullary constructor; see exercise 5.17 of [35].

¬(W a : A • B a) ∼= ¬ (Σ a : A • ¬ B a)
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5.4. ΠΣW Semantics for Contexts

Parameterised Agda modules (and records) are contexts —i.e., Coq modules— that have all
their parameters first then followed only by named symbols that must have term definitions.
These are a mixture of Π and Σ types: The parameters are captured by a Π type and the
defined names are captured by Σ-types as in “ Π parameters • Σ body ”. (In general, since
Coq modules allow parameters to occur after locally defined names, one could use let-clauses
to mimic such an approach with Π-Σ-types.) Were it possible, dynamically on-the-fly, to only
request a subsegement of the parameters list then we have a solution to the unbundling problem.
Moreover, as we will show, contexts can also be furnished withW semantics to obtain a termtype
for the structure being defined —this is one of our primary contributions.

A quick recap of how Π, Σ, W serve programming: “Π” Product types are the essence
of structured data —all languages have some form of product type, such as record, class, struct,
object, JSON object, hashmap. “Σ” Most data structures involve alternatives, choice, which is
expressed by sum types —a value of a sum type is thus used (‘eliminated’) by case analysis.
Perhaps the simplest example of a sum type is the type of truth values: Acting depends on
whether a particular condition is true or false. The eliminator (“how to use the Boolean”) for the
Booleans is the familiar if. . .then. . .else construct. More generally, sum types may be used
to define finitely enumerated types, the types whose values are of an explicitly declared set and
whose elimination form (“how to use them”) is case analysis. For instance, the cardinal directions
—Up, Down, Left, Right— are an enumerated type that may be useful in an system requiring
navigation, whereas the type Maybe τ ::= Just τ | Nothing models pointers to values of type
τ . Notice that Maybe τ is an enumerated type where its values may hold values of τ —these
are alternatives with a ‘payload’: Indeed, Maybe τ ∼= τ + 1. “W” Next, one wonders, can
we have an enumerated type whose values may involve other values of the type being defined:
Enter inductive types; which are captured by W-types.

For brevity we will work with the polymorphic lambda calculus, ‘System F’, whose terms are
as follows —assuming a given set of variable Names.

Term ::= x (variable, an element of Name)
| λx • e (lambda abstraction)
| f e (application)
| Πx : A • B (dependent function type)
| Typei (ith universe; i = 0, 1, 2, ...)

We may then take types to be the terms that describe other terms; as such, there is one grammar
for both rather than two grammars.

Type constructions T : Type→ Type give algebraic data types —“initial algebras”— I satisfy-
ing I ∼= T (I) by the definition I = ΠX : Type • (T X → X)→ X. We use this idea to regain
the other useful type formers; e.g., for W-types we have T X = Σ a : A • (B a → X) and so
W-types are encoded as ΠX : Type • ((Σ a : A • (B a → X)) → X)) → X, or equivalently
—using Σ-elimination— as ΠX : Type • (Π a : A • Σ f : B a→ X • X)→ X.
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Type Encoding
0 ΠX : Type • X
1 ΠX : Type • (X → X)
A→ B Π_ : A • B
A×B Π i : Fin 2 • λ{0→ A, 1→ B} i
Σx : A • B ΠX : Type • (Πx : A • Π y : B • X)→ X
W x : A • B ΠX : Type • (Πx : A • Π f : (B → X) • X)→ X

Recall that our contexts are left-growing lists of variables annotated with their types. We
use left-growing instead of the more common right-growing lists since we are working with
dependent contexts: In the context x : A; Γ we expect the name x to be available in the rest
of the context Γ.

Γ ::= . (empty context)
| x : A,Γ (context extension)

We shall use the same notation — viz x0, x1, . . . , xn and · — to denote lists and make use of a
number of common list operations, including the following.

foldr1 : ∀{τ}(_⊕_ : τ → τ → τ)→ List τ → τ
foldr1_⊕_ (x, ·) = x
foldr1_⊕_ (x, xs) = x⊕ (foldr1_⊕_xs)

any : ∀{τ}(p : τ → B)→ List τ → B
any p · = false
any p (x, xs) = p x ∨ any p xs

We can then define a number of semantics functions on contexts.
Π[[_]] : Context→ Term
Π[[·]] = 1
Π[[x : A,Γ]] = Πx : A • Π[[Γ]]

For instance, Π[[ Carrier : Type, point : Carrier ]] = Π Carrier : Type • Π point : Carrier • 1;
the right-hand side is the uninteresting function sending its input to the only element of 1. We
will find practical uses for this operation in conjunction with the others.

Of course any proper Π-term can be converted to a context:

Γ[[_]] : Term→ Context
Γ[[Πx : A • B]] = x : A,Γ[[B]]
Γ[[t]] = ·

By structural induction, one can verify Γ [[ Π[[c]] ]] = c —but we do not, in general, have an
isomorphism.

The next semantics function is hardly more complicated.

Σ[[_]] : Context→ Term
Σ[[·]] = 1
Σ[[x : A,Γ]] = Σx : A • Σ[[Γ]]
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For instance, Σ [[Carrier : Type, point : Carrier ]] = Σ Carrier : Type • Σ point : Carrier • 1;
the right-hand side is essentially a record type but lacking any syntactic sugar. This is the usual
record semantics of contexts.

The next semantics function is perhaps the most complicated. Given a context Γ and an
elected type name τ , this operation keeps only the names of Γ that ‘hit’ τ —i.e., they have
types being functions targeting τ— then it ‘d’rops that h‘ead’ —c.f., dead below— from the
resulting types in the context and produces a ‘hole’ for any recursive call; finally, the resulting
types are summed as well as the holes.

W[[_]] : Context→ Name→ Term
W[[Γ]] τ = if any (_hits τ) Γ

thenW (foldr1 + (dead τ Γ)) (foldr1O (holes τ Γ))
else 0

It is important that we use foldr1 and not foldr since we do not want to append any type
for the recursive base case (empty list) —otherwise, our ADTs would all have ‘one more’ new
constructor. The ‘+’ is the sum construction on types, whereas ‘O’ is the sum selection operator
—i.e., sum eliminator 42. For instance, W [[Carrier : Type, point : Carrier ]] Carrier = W 1 (λ
_ → Fin 0); the right-hand side is essentially a data declaration with one (‘1’) nullary (‘Fin 0’)
constructor. This semantics, as far as we know, is novel.

The helper functions required to define W[[_]] include the standard textual substitution of
terms, the subterm relation ‘⊆’, and ‘x]t’ for the operation of the number of times a name x
occurs in a term t. The two unmentioned operations below are the incidence relation ‘�’ and

42 Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. “Functional Programming with Bananas, Lenses,
Envelopes and Barbed Wire”. In: Functional Programming Languages and Computer Architecture, 5th
ACM Conference, Cambridge, MA, USA, August 26-30, 1991, Proceedings. Ed. by John Hughes. Vol. 523.
LNCS. Springer, 1991, pp. 124–144. isbn: 3-540-54396-1. doi: 10 . 1007/3540543961_7. url: https :
//doi.org/10.1007/3540543961_7
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the context subtraction operation ‘-’.

_�_ : Name× Term→ Context→ B
x : A � Γ = “typing x : A draws from context Γ”
x : A � · = false
x : A � (y : B,Γ) = x = y ∨ y ⊆ A ∨ x : A � Γ

_−_ : Context→ Context→ Context
· − Γ′ = ·
(x : A,Γ) − Γ′ = if x : A � Γ′ then Γ − (x : A,Γ′) else x : A, (Γ− Γ′)

_hits_ : Term→ Name→ B
x hits y = (x = y) (Variable case)
(Πx : A • B) hits y = B hits y (Π-type)
t hits y = false (All other cases)

dead : Name→ Context→ List Term
deadA · = ·
deadA (y : B,Γ) = if B hitsA

then Σ[[init Γ[[B]]]][A := 1], deadAΓ
else deadAΓ − y : B

holes : Name→ Context→ List Term
holesA · = Fin 0
holesA (y : B,Γ) = if B hitsA then Fin (A]B − 1), holesAΓ else holesA (Γ − y : B)

Rather than prove any correctness of these generic operations, we will, in Chapter 7, mech-
anise them in Agda. The mechanisation is a non-trivial contribution since it is the “real-world
details” where things become rather involved. For instance, unlike our supposed setup above,
in Agda terms have a much larger syntax and so a number of combinators must be developed
along the way —including, manipulation of De Bruijn indices. Moreover, the resulting Agda
setup is pragmatic since it uses monadic do-notation to achieve a simple concrete syntax for
contexts and, unlike the above setup, it is a library and not a ‘proof-of-concept’ development
from scratch. “In theory, it’s doable; actually doing it is another matter!”

Finally, there is a family of useful semantics combinators built on top of Π[[_]]. For any
semantics function Q[[_]] : Context→ Term, we have the family “ΠwQ” for each waist w : N.

ΠwQ[[_]] : Context→ Term
Π0Q[[Γ]] = Q[[Γ]]
Πw+1Q[[·]] = Q[[·]]
Πw+1Q[[x : A,Γ]] = Πx : A • ΠwQ[[Γ]]

For instance, the single context Carrier : Type, Tree : Type, leaf : Carrier → Tree,
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branch : Tree → Tree → Tree can be used to obtain a parameterised record and a param-
terised datatype —both being different useful ways to view the same context. follows.

Π1Σ ≈ Typeclass

Π1Σ [[ Carrier : Type, Tree : Type, leaf : Carrier → Tree
, branch : Tree → Tree → Tree ]]

=
Π Carrier : Type • Σ Tree : Type • Σ leaf : Carrier → Tree

• Σ branch : Tree → Tree → Tree • 1
≈

record CollectionOn (Carrier : Set) : Set1 where
field

collection : Set -- ‘Tree’ above
singleton : Carrier → collection -- ‘leaf’ above
merge : collection → collection → collection -- ‘branch’ above

Π1W ≈ Termtypes

Π1W [[ Carrier : Type, Tree : Type, leaf : Carrier → Tree
, branch : Tree → Tree → Tree ]] Tree

=
Π Carrier : Type • W (Carrier + 1 × 1) (λ{inl _ → Fin 0, inr _ → Fin 2})
≈

data TreeOn (Carrier : Set) : Set where
leaf : Carrier → TreeOn Carrier
branch : TreeOn Carrier → TreeOn Carrier → TreeOn Carrier

As the examples show sometimes after restructuring a context it can be useful to perform a
renaming operation. The current implementation of Agda does not allow for the declaration of
freshly named entities and so we relegate this aspect to the Emacs Lisp prototype of Chapter
6. The prototype is able to perform such renaming and remember the relationship43,44 to the
original datatype by augmenting the resulting record with coercions —‘forgetful operations’—
to the original, parent, context. Consequently, the prototype —even though it is useful by
itself— acts as a guide for features that would be ideal to implement in a DTL capable of
supporting them as a library.

Finally, the “do-it-yourself” in the title of the thesis is that the resulting Agda library of
Chapter 7 is designed around Π[[_]] and Σ[[_]] but users would use any other, possibly personal,
semantics operation Q[[_]].

43 William M. Farmer. “A New Style of Mathematical Proof”. In: Mathematical Software - ICMS 2018 - 6th
International Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings. Ed. by James H. Davenport
et al. Vol. 10931. LNCS. Springer, 2018, pp. 175–181. isbn: 978-3-319-96417-1. doi: 10.1007/978-3-319-
96418-8_21. url: https://doi.org/10.1007/978-3-319-96418-8_21

44 William M. Farmer. A New Style of Proof for Mathematics Organized as a Network of Axiomatic Theories.
2018. arXiv: 1806.00810v2 [cs.LO]
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For the interested reader, the full
implementation is presented literately
as a discussion at https://alhassy.
github.io/next-700-module-systems/
prototype/package-former.html. We
will not be discussing any Lisp code in
particular.
1 Section 6.3 contains an example-
driven approach
2 Indeed, the MathScheme [75] proto-
type already shows this.
3 Just as the primitive of a program-
ming language permit arbitrarily com-
plex programs to be written.
4 Dreyer [76] provides a through sum-
mary of the main issue in module sys-
tem design.
5 Our approach is reminiscent of Deriv-
ing Via [77].

The core of this chapter shows how
some of the problems of Chapter 3, Ex-
amples from the wild, can be solved us-
ing PackageFormer.

A ~20 minute lecture on
PackageFormer, given at Athens
SPLASH 2019, may be viewed at
https://youtu.be/xLHgN0dOZ6E.

6. The PackageFormer
Prototype

From the lessons learned from spelunking in a few libraries, we
concluded that metaprogramming is a reasonable road on the jour-
ney toward first-class modules in DTLs. As such, we begin by forming
an ‘editor extension’ to Agda with an eye toward a small number of
‘meta-primitives’1 for forming combinators on modules. The exten-
sion is written in Lisp, an excellent language for rapid prototyping.
The purpose of writing the editor extension is not only to show that
the ‘flattening’ of value terms and module terms is feasible2 ; but to
also show that ubiquitous packaging combinators can be generated3
from a small number4 of primitives. The resulting tool resolves many
of the issues discussed in Section 3.

This chapter is organised as follows. Firstly, the use of Lisp is
explained. Then, an example demonstration5 of the utilities of the
prototype is given. Afterwards is an overview of the combinators
that we have constructed using the prototype and we showcase a few
of them to solve problems observed in Chapter 3. The prototype’s
fundamental unit is the generalised signature of Chapter 2, with the
ambient generalised type theory being MLTT (see Chapter 2); but
we will not discuss how the combinators can be assigned semantics
as morphisms in an appropriate category of signatures. Instead, we
will reach for an Agda-based semantics in the next chapter.
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6 A prototype’s raison d’etre is a testing
ground for ideas, so its ease of devel-
opment may well be more important
than its usability.

[78] Paul Graham. ANSI Common
Lisp. USA: Prentice Hall Press, 1995.
isbn: 0133708756
Why Emacs?
7 IDE: Interactive Development Envi-
ronment
8 None of my colleagues thought Lisp
was at all the ‘right’ choice; of course,
none of them had the privilege to use
the language enough to appreciate it
for the wonder that it is.
Why an editor extension? Because
we quickly needed a convenient proto-
type to actually “figure out the prob-
lem”.
9 Instead of “hacking in” a new feature,
one could instead carefully research,
design, and implement a new feature.
10 Unless one uses a sufficiently flexible
IDE that allows the seemless integra-
tion of preprocessing tools; which is ex-
actly what we have done with Emacs.

0 “Growing a Language”; Difficulty
for user setup vs difficulty for
implementation
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6.1. Why an editor extension?

The prototype6 rewrites Agda phrases from an extended Agda syntax
to legitimate existing syntax; it is written as an Emacs editor exten-
sion to Emacs’ Agda interface, using Lisp [78]. Since Agda code
is predominately written in Emacs, a practical and pragmatic editor
extension would need to be in Agda’s de-facto IDE7 , Emacs. More-
over, Agda development involves the manipulation of Agda source
code by Emacs Lisp —for example, for case splitting and term refine-
ment tactics— and so it is natural to extend these ideas. Nonetheless,
at a first glance, it is humorous8 that a module extension for a stat-
ically dependently-typed language is written in a dynamically type
checked language. However, a lack of static types means some design
decisions can be deferred as much as possible.

Unless a language provides an extension mechanism, one is forced
to either alter the language’s compiler or to use a preprocessing tool
—both have drawbacks. The former9 is dangerous; e.g., altering
the grammar of a language requires non-trivial propagated changes
throughout its codebase, but even worse, it could lead to existing
language features to suddenly break due to incompatibility with the
added features. The latter is tiresome10 : It can be a nuisance to
remember always invoke a preprocessor before compilation or type-
checking, and it becomes extra baggage to future users of the code-
base —i.e., a further addition to the toolchain that requires regular
maintenance in order to be kept up to date with the core language.
A middle-road between the two is not always possible. However, if
the language’s community subscribes to one IDE, then a reasonable
approach0 to extending a language would be to plug-in the necessary
preprocessing —to transform the extended language into the pure
core language— in a saliently silent fashion such that users need not
invoke it manually.

The usual workflow of an Agda user involves writing some code
(types and terms alike), then asking for Agda to typecheck it. The
typechecking operation is done quite frequently. Thus, one way for
our prototype to fit in well to this workflow is to extend the emacs
hook that triggers Agda’s typechecking to also invoke our prototype.

The prototype implementation works via string manipulations. Al-
though we have no formal proof of this, the manipulations all seem
quite straightforward, and none seem to be overly time-consuming.
While we can’t be assured that these are linear in the size of the code,
in practice, it seems like this is the case. To guard against bugs po-
tentially introduced through this untyped “wild manipulation” phase,
Agda typechecks everything that the prototype generates, thus en-
suring eventual soundness.
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11 Emacs Lisp is a combination of a
large porition of Common Lisp and
a editor language supporting, e.g.,
buffers, text elements, windows, fonts.

12 E.g., since Emacs is a self-
documenting editor, whenever a user of
our tool wishes to see the documenta-
tion of a module combinator that they
have written, or to read its Lisp elab-
oration, they merely need to invoke
Emacs’ help system —e.g., C-h o or
M-x describe-symbol.

[79] Doug Hoyte. Let Over Lambda.
Lulu.com, 2008. isbn: 1435712757

With the extension, Agda’s usual C-c
C-l command parses special com-
ments containing fictitious Agda dec-
larations, produces an auxiliary Agda
file which it ensures is imported in the
current file, then control is passed to
the usual Agda typechecking mecha-
nism.

Unlike Agda itself, which rewrites user code, such as when doing
case-split, and will occasionally produce incorrect code, we eschew
that. Instead, our prototype produces auxilliary files that contain
Agda code, which are then imported into user code. The necessary
import clauses, to the auxiliary files, are automatically inserted when
not present. One benefit of this approach is that library users do not
need to know about the extended language, as what is imported is
pure Agda, albeit with the extended language features appearing in
special comments.

Why Lisp? Emacs is extensible using Elisp11 wherein literally
every key may be remapped and existing utilities could easily be
altered without having to recompile Emacs. In some sense, Emacs
is a Lisp interpreter and state machine. This means, we can hook
our editor extension seamlessly into the existing Agda interface and
even provide tooltips, among other features12 , to quickly see what
our extended Agda syntax transpiles into.

Finally, Lisp uses a rather small number of constructs, such as
macros and lambda, which themselves are used to build ‘primitives’,
such as defun for defining top-level functions [79]. Knowing this
about Lisp encourages us to emulate this expressive parsimony.

6.2. Aim: Scrap the Repetition

Programming Language research is summarised, in essence, by the
question: If X is written manually, what information Y can be de-
rived for free? Perhaps the most popular instance is type inference:
From the syntactic structure of an expression, its type can be de-
rived. From a context, the PackageFormer editor extension can
generate the many common design patterns discussed earlier in Sec-
tion 3.5.1; such as unbundled variations of any number wherein fields
are exposed as parameters at the type level, term types for syntactic
manipulation, arbitrary renaming, extracting signatures, and forming
homomorphism types. In this section we discuss how PackageFormer
works and provide a ‘real-world’ use case, along with a discussion.

Below is example code that can occur in the specially recognised
comments. The first eight lines, starting at line 1, are essentially
an Agda record declaration but the field qualifier is absent. The
declaration is intended to name an abstract context, a sequence of
“name : type” pairs as discussed at length in Chapter 2, but we use
the name PackageFormer instead of ‘context, signature, telescope’,
nor ‘theory’ since those names have existing biased connotations —
besides, the new name is more ‘programmer friendly’.
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Now to actually use this context ...
M-Sets as records, possibly with re-
naming or parameters.

? ? ?

Duality; we might want to change
the order of the action, say, to write
evalAt x f instead of run f x—using
the program-input interpretation of M-
Sets above.

? ? ?

Keeping only the ‘syntactic interface’,
say, for serialisation or automation.

? ? ?

Collapsing different features to obtain
the notion of “monoid”.

? ? ?

Obtaining parts of the monoid hierar-
chy (see Chapter 3) from M-Sets
1 In the code block, the names have
been chosen to stay relatively close
to the real-world examples
presented in Chapter 3. The name
M-Set comes from monoid acting
on a set ; in our example, Scalar
values may act on Vector values to
produce new Scalar values. The
programmer may very well
appreciate this example if the
names Scalar, 1, _×_, Vector,
_·_ were chosen to be Program,
do-nothing, _#_, Input, run.
With this new naming, leftId says
running the empty program on any
input, leaves the input unchanged,
whereas assoc says to run a
sequence of programs on an input,
the input must be threaded through
the programs. Whence, M-Sets
abstract program execution.
13 Conflating fields, parameters,
and definitional extensions: The
lack of a field keyword and for-
bidding parameters means that arbi-
trary programs may ‘live within’ a
PackageFormer and it is up to a varia-
tional to decide how to treat them and
their optional definitions.
14 For every (special comment) dec-
laration L = R in the source file, the
name L obtains a tooltip which men-
tions its specification R and the result-
ing legitimate Agda code. This feature
is indispensable as it lets one gener-
ate grouping mechanisms and quickly
ensure that they are what one intends
them to be.

M-Sets are sets ‘Scalar’ acting ‘_·_’ on semigroups ‘Vector’

1 PackageFormer M-Set : Set1 where
2 Scalar : Set
3 Vector : Set
4 _·_ : Scalar → Vector → Vector
5 1 : Scalar
6 _×_ : Scalar → Scalar → Scalar
7 leftId : {v : Vector} → 1 · v ≡ v
8 assoc : {a b : Scalar} {v : Vector} → (a × b) · v
9 ≡ a · (b · v)

Different Ways to Organise (“interpret” / “use”) M-Sets

9 Semantics = M-Set−→⊕ record
10 SemanticsD = Semantics−→⊕ rename (λ x → (concat x "D"))
11 Semantics3 = Semantics :waist 3
12

13 Left-M-Set = M-Set−→⊕ record
14 Right-M-Set = Left-M-Set−→⊕ flipping "_·_" :renaming "leftId

to rightId"↪→

15

16 ScalarSyntax = M-Set−→⊕ primed−→⊕ data "Scalar'"
17 Signature = M-Set−→⊕ record−→⊕ signature
18 Sorts = M-Set−→⊕ record−→⊕ sorts
19

20 V-one-carrier = renaming "Scalar to Carrier; Vector to
Carrier"↪→

21 V-compositional = renaming "_×_ to _#_; _·_ to _#_"
22 V-monoidal = one-carrier−→⊕ compositional−→⊕ record
23

24 LeftUnitalSemigroup = M-Set−→⊕ monoidal
25 Semigroup = M-Set−→⊕ keeping "assoc"−→⊕ monoidal
26 Magma = M-Set−→⊕ keeping "_×_"−→⊕ monoidal

These1 manually written ∼25 lines elaborate into the ∼100 lines of
raw, legitimate, Agda syntax below —line breaks are denoted by the
symbol ‘↪→’ rather than inserted manually, since all subsequent code
snippets in this section are entirely generated by PackageFormer.
The result is nearly a 400% increase in size; that is, our fictitious
code will save us a lot of repetition.

Let’s discuss what’s actually going on here.

The first line declares the context of M-Sets using traditional Agda
syntax “ record M-Set : Set1 where ” except the we use the word
PackageFormer to avoid confusion with the existing record concept,
but13 we also omit the need for a field keyword and forbid the
existence of parameters. Such abstract contexts have no concrete
form in Agda and so no code is generated; the second snippet above14
shows sample declarations that result in legitimate Agda.

PackageFormer module combinators are called variationals since
they provide a variation on an existing grouping mechanism. The syn-
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The waist is the number of parameters
exposed; recall ΠwΣ from Chapter 4.

15 It is important to remark that the
mechanical construction of such views
(coercions) is not built-in, but rather
a user-defined variational that is con-
structed from PackageFormer’s meta-
primitives.

tax p−→⊕ v1 −→⊕ · · · −→⊕ vn is tantamount to explicit forward func-
tion application vn (vn−1 (· · · (v1 p))). With this understanding,
we can explain the different ways to organise M-sets.

In line 9, the record variational is invoked to transform the
abstract context M-Set into a valid Agda record declaration, with
the key word field inserted as necessary. Later, its first 3 fields are
lifted as parameters using the meta-primitive :waist.

Elaboration of lines 9-11 Record / decorated renaming / typeclass forms

{- Semantics = M-Set−→⊕ record -}
record Semantics : Set1 where

field Scalar : Set
field Vector : Set
field _·_ : Scalar → Vector → Vector
field 1 : Scalar
field _×_ : Scalar → Scalar → Scalar
field leftId : {v : Vector} → 1 · v ≡ v
field assoc : {a b : Scalar} {v : Vector} → (a × b) · v ≡ a · (b · v)

{- SemanticsD = Semantics−→⊕ rename (λ x → (concat x "D")) -}
record SemanticsD : Set1 where

field ScalarD : Set
field VectorD : Set
field _·D_ : ScalarD → VectorD → VectorD
field 1D : ScalarD
field _×D_ : ScalarD → ScalarD → ScalarD
field leftIdD : {v : VectorD} → 1D ·D v ≡ v
field assocD : {a b : ScalarD} {v : VectorD} → (a ×D b) ·D v ≡ a ·D

(b ·D v)↪→

toSemantics : let View X = X in View Semantics ; toSemantics = record {Scalar =
ScalarD;Vector = VectorD;_·_ = _·D_;1 = 1D;_×_ = _×D_;leftId = leftIdD;assoc =
assocD}

↪→

↪→

{- Semantics3 = Semantics :waist 3 -}
record Semantics3 (Scalar : Set) (Vector : Set) (_·_ : Scalar → Vector → Vector) : Set1 where

field 1 : Scalar
field _×_ : Scalar → Scalar → Scalar
field leftId : {v : Vector} → 1 · v ≡ v
field assoc : {a b : Scalar} {v : Vector} → (a × b) · v ≡ a · (b · v)

Notice how SemanticsD was built from a concrete context, namely
the Semantics record. As such, every instance of SemanticsD can be
transformed as an instance of Semantics: This view15 is automati-
cally generated and named toSemantics above, by default. Likewise,
Right-M-Set was derived from Left-M-Set and so we have automat-
ically have a view Right-M-Set → Left-M-Set.

“Arbitrary functions act on modules”: When only one varia-
tional is applied to a context, the one and only sequencing operator
‘−→⊕ ’ may be omitted. As such, the Decorated SemanticsD is defined
as Semantics rename f, where f is the decoration function. In this
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That is, we have a binary operation in
which functions may act on modules
—this is yet a new feature that Agda
cannot perform.
More accurately, the ‘−→⊕ ’-based mini-
language for variationals is realised
as a Lisp macro and so, in gen-
eral, the right side of a declara-
tion in 700-comments is interpreted as
valid Lisp modulo this mini-language:
PackageFormer names and variation-
als are variables in the Emacs environ-
ment —for declaration purposes, and
to avoid touching Emacs specific utili-
ties, variationals f are actually named
V-f. One may quickly obtain the doc-
umentation of a variational f with
C-h o RET V-f to see how it works.

An algebraic data type is a tagged
union of symbols, terms, and so is one
type —see Section 5.3.
Recall from Chapter 2, symbols that
target Set are considered sorts and if
we keep only the symbols targeting a
sort, we have a signature. By allowing
symbols to be of type Set, we actually
have generalised contexts.

form, one is tempted to believe

_rename_ : PackageFormer → (Name → Name) →
PackageFormer

Likewise, line 13, mentions another combinator

_flipping_ : PackageFormer → Name → PackageFormer

All combinators are demonstrated in this section and their use-
fulness is dicussed in the next section. For example, in contrast to
the above ‘type’, the flipping combinator also takes an optional
keyword argument :renaming, which simply renames the given pair.
The notation of keyword arguments is inherited from Lisp.

Elaboration of lines 13-14 Duality: Sets can act on semigroups from the left or the right

{- Left-M-Set = M-Set−→⊕ record -}
record Left-M-Set : Set1 where

field Scalar : Set
field Vector : Set
field _·_ : Scalar → Vector → Vector
field 1 : Scalar
field _×_ : Scalar → Scalar → Scalar
field leftId : {v : Vector} → 1 · v ≡ v
field assoc : {a b : Scalar} {v : Vector} → (a × b) · v ≡ a · (b · v)

{- Right-M-Set = Left-M-Set−→⊕ flipping "_·_" :renaming "leftId to rightId" -}
record Right-M-Set : Set1 where

field Scalar : Set
field Vector : Set
field _·_ : Vector → Scalar → Vector
field 1 : Scalar
field _×_ : Scalar → Scalar → Scalar
field rightId : let _·_ = λ x y → _·_ y x in {v : Vector} → 1 · v ≡ v
field assoc : let _·_ = λ x y → _·_ y x in {a b : Scalar} {v : Vector} → (a × b)

· v ≡ a · (b · v)↪→

toLeft-M-Set : let _·_ = λ x y → _·_ y x in let View X = X in View
Left-M-Set ; toLeft-M-Set = let _·_ = λ x y → _·_ y x in record {Scalar =
Scalar;Vector = Vector;_·_ = _·_;1 = 1;_×_ = _×_;leftId = rightId;assoc = assoc}

↪→

↪→

Next, in line 16, we view a context as a termtype by declaring
one sort of the context to act as the termtype (carrier) and then keep
only the function symbols that target it —this is the core idea that
is used when we operate on Agda Terms in the next chapter.
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The priming decoration in
ScalarSyntax is needed so that
the names 1, _×_ do not pollute the
global name space.

User defined variationals are applied
as if they were built-ins.

Elaboration of lines 16-18 Termtypes and lawless presentations

{- ScalarSyntax = M-Set−→⊕ primed−→⊕ data "Scalar′" -}
data ScalarSyntax : Set where

1′ : ScalarSyntax
_×′_ : ScalarSyntax → ScalarSyntax →

ScalarSyntax↪→

{- Signature = M-Set−→⊕ record−→⊕ signature -}
record Signature : Set1 where

field Scalar : Set
field Vector : Set
field _·_ : Scalar → Vector → Vector
field 1 : Scalar
field _×_ : Scalar → Scalar → Scalar

{- Sorts = M-Set−→⊕ record−→⊕ sorts -}
record Sorts : Set1 where

field Scalar : Set
field Vector : Set

Finally, starting with line 20, declarations start with “ V- ” to
indicate that a new variation combinator is to be formed, rather
than a new grouping mechanism. For instance, the user-defined
one-carrier variational identifies both the Scalar and Vector sorts,
whereas compositional identifies the binary operations; then, finally,
monoidal performs both of those operations and also produces a con-
crete Agda record formulation. Below, in the final code snippet of
this section, are the elaborations of using these new user-defined vari-
ationals.

Elaboration of lines 24-26 Conflating features gives familiar structures

{- LeftUnitalSemigroup = M-Set−→⊕ monoidal -}
record LeftUnitalSemigroup : Set1 where

field Carrier : Set
field _#_ : Carrier → Carrier → Carrier
field 1 : Carrier
field leftId : {v : Carrier} → 1 # v ≡ v
field assoc : {a b : Carrier} {v : Carrier} → (a # b) # v ≡ a # (b # v)

{- Semigroup = M-Set−→⊕ keeping "assoc"−→⊕ monoidal -}
record Semigroup : Set1 where

field Carrier : Set
field _#_ : Carrier → Carrier → Carrier
field assoc : {a b : Carrier} {v : Carrier} → (a # b) # v ≡ a # (b # v)

{- Magma = M-Set−→⊕ keeping "_×_"−→⊕ monoidal -}
record Magma : Set1 where

field Carrier : Set
field _#_ : Carrier → Carrier → Carrier
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Hovering to show details. Notice spe-
cial syntax has default colouring: Red
for PackageFormer delimiters, yellow
for elements, and green for variation-
als.

[7] Jacques Carette and Russell
O’Connor. “Theory Presentation
Combinators”. In: Intelligent Com-
puter Mathematics (2012), pp. 202–
215. doi: 10.1007/978-3-642-31374-
5_14

As shown in the figure below, the source file is furnished with
tooltips displaying the special comment that a name is associated
with, as well as the full elaboration into legitimate Agda syntax. In
addition, the above generated elaborations also document the special
comment that produced them. Moreover, since the editor extension
results in valid code in an auxiliary file, future users of a library need
not use the PackageFormer extension at all —thus we essentially
have a static editor tactic similar to Agda’s (Emacs interface) proof
finder.

6.3. Practicality

Herein we demonstrate how to use this system from the perspective
of library designers. That is to say, we will demonstrate how com-
mon desirable features encountered “in the wild” —Chapter 3— can
be used with our system. The exposition here follows Section 2 [7],
reiterating many the ideas therein. These features are not built-in
but instead are constructed from a small set of primitives, shown be-
low, just as a small core set of language features give way to complex
software programs. Moreover, users may combine the primitives —
using Lisp— to extend the system to produce grouping mechanisms
for any desired purpose.
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Do-it-yourself Extendability: In
order to make the editor extension
immediately useful, and to substanti-
ate the claim that common module
combinators can be defined using
the system, we have implemented a
few notable ones, as described in the
table below. The implementations, in
the user manual, are discussed along
with the associated Lisp code and use
cases.

Any variational v that takes an argu-
ment of type τ can be thought of as a
binary packaged-valued operator,

_v_ : PackageFormer
→ τ
→ PackageFormer

With this perspective, the sequenc-
ing variational combinator ‘−→⊕ ’ is es-
sentially forward function composi-
tion/application. Details can be found
on the associated webpage; whereas
the next chapter provides an Agda
function-based semantics.

Metaprogramming Meta-primitives for Making Modules

Name Description
:waist Consider the first N elements as, possibly ill-formed, parameters.
:kind Valid Agda grouping mechanisms: record, data, module.
:level The Agda level of a PackageFormer.
:alter-elements Apply a List Element → List Element function over a PackageFormer.
−→⊕ Compose two variational clauses in left-to-right sequence.
map Map a Element → Element function over a PackageFormer.
generated Keep the sub-PackageFormer whose elements satisfy a given predicate.

The few constructs demonstrated in this section not only create
new grouping mechanisms from old ones, but also create morphsisms
from the new, child, presentations to the old parent presentations.
For example, a theory extended by new declarations comes equipped
with a map that forgets the new declarations to obtain an instance of
the original theory. Such morphisms are tedious to write out, and our
system provides them for free. The user can implement such features
using our 5 primitives —but we have implemented a few to show that
the primitives are deserving of their name, as shown below.

Summary of Sample Variationals Provided With The System

Name Description
record Reify a PackageFormer as a valid Agda record
data Reify a PackageFormer as a valid Agda algebraic data type, W-type
extended-by Extend a PackageFormer by a string-“;”-list of declaration
union Union two PackageFormers into a new one, maintaining relationships
flipping Dualise a binary operation or predicate
unbundling Consider the first N elements, which may have definitions, as parameters
open Reify a given PackageFormer as a parameterised Agda module declaration
opening Open a record as a module exposing only the given names
open-with-decoration Open a record, exposing all elements, with a given decoration
keeping Largest well-formed PackageFormer consisting of a given list of elements
sorts Keep only the types declared in a grouping mechanism
signature Keep only the elements that target a sort, drop all else
rename Apply a Name → Name function to the elements of a PackageFormer
renaming Rename elements using a list of “to”-separated pairs
decorated Append all element names by a given string
codecorated Prepend all element names by a given string
primed Prime all element names
subscriptedi Append all element names by subscript i : 0..9
hom Formulate the notion of homomorphism of parent PackageFormer algebras

PackageFormer packages are an implementation of the idea of
packages fleshed out in Chapter 2. Tersely put, a PackageFormer
package is essentially a pair of tags —alterable by :waist to deter-
mine the height delimiting parameters from fields, and by :kind to
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16 The PackageFormer manual provides
the expected Lisp methods one is inter-
ested in, such as (list x0 . . . xn) to
make a list and first, rest to decom-
pose it, and (--map (· · · it· · · ) xs) to
traverse it. Moreover, an Emacs Lisp
cheat sheet covering the basics is pro-
vided.

One may use the call
P = Q extended-by R :adjoin-retract nil
to extend Q by declaration R but avoid
having a view (coercion) P → Q. Of
course, extended-by is user-defined
and we have simply chosen to adjoint
retract views by default; the online
documentation shows how users can
define their own variationals.

determine a possible legitimate Agda representation that lives in a
universe dictated by :level— as well as a list of declarations (ele-
ments) that can be manipulated with :alter-elements.

The remainder of this section is an exposition of notable user-
defined combinators —i.e., those which can be constructed using
the system’s primitives and a small amount of Lisp. Along the
way, for each example, we show both the terse specfication using
PackageFormer and its elaboration into pure typecheckable Agda.
In particular, since packages are essentially a list of declarations —
see Chapter 2— we begin in Section 6.3.1 with the extended-by
combinator which “grows a package”. Then, in Section 6.3.2, we show
how Agda users can quickly, with a tiny amount of Lisp16 knowl-
edge, make useful variationals to abbreviate commonly occurring sit-
uations, such as a method to adjoin named operation properties to a
a package. After looking at a renaming combinator, in Section 6.3.3,
and its properties that make it resonable; we show the Lisp code, in
Section 6.3.4 required for a pushout construction on packages. Of
note is how Lisp’s keyword argument feature allows the verbose 5-
argument pushout operation to be used easily as a 2-argument oper-
ation, with other arguments optional. This construction is shown to
generalise set union (disjoint and otherwise) and provide support for
granular hierarchies thereby solving the so-called ‘diamond problem’.
Afterword, in Section 6.3.5, we turn to another example of formalis-
ing common patterns —see Chapter 3— by showing how the idea of
duality, not much used in simpler type systems, is used to mechani-
cally produce new packages from old ones. Then, in Section 6.3.6, we
show how the interface segregation principle can be applied after the
fact. Finally, we close in Section 6.3.7 with a measure of the systems
immediate practicality.

6.3.1. Extension

The simplest operation on packages is when one package is included,
verbatim, in another. Concretely, consider Monoid —which consists
of a number of parameters and the derived result I-unique— and
CommutativeMonoid0 below.
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So much repetition for an additional
axiom! Eek!

As discussed in the previous section,
mouse-hovering over the left-hand-side
of this declaration gives a tooltip show-
ing the resulting elaboration, which is
identical to CommutativeMonoid0 above
—followed by forgetful operation. The
tooltip shows the expanded version of
the theory, which is what we want to
specify but not what we want to
enter manually.

The definition below uses functional
methods and should not be inaccessi-
ble to Agda programmers.

? ? ?

Method call (s-replace old new s)
replaces all occurrences of string old
by new in the given string s.

? ? ?

(pcase e (x0 y0) . . . (xn yn)) pat-
tern matches on e and performs the
first yi if e = xi, otherwise it returns
nil.

Manually Repeating the entirety of ‘Monoid’ within
‘CommutativeMonoid0’

PackageFormer Monoid : Set1 where
Carrier : Set
_·_ : Carrier → Carrier → Carrier
assoc : {x y z : Carrier} → (x · y) · z ≡ x · (y · z)
I : Carrier
leftId : {x : Carrier} → I · x ≡ x
rightId : {x : Carrier} → x · I ≡ x
I-unique : ∀ {e} (lid : ∀ {x} → e · x ≡ x) (rid : ∀ {x} →

x · e ≡ x) → e ≡ I↪→

I-unique lid rid = ≡.trans (≡.sym leftId) rid

PackageFormer CommutativeMonoid0 : Set1 where
Carrier : Set
_·_ : Carrier → Carrier → Carrier
assoc : {x y z : Carrier} → (x · y) · z ≡ x · (y · z)
I : Carrier
leftId : {x : Carrier} → I · x ≡ x
rightId : {x : Carrier} → x · I ≡ x
comm : {x y : Carrier} → x · y ≡ y · x
I-unique : ∀ {e} (lid : ∀ {x} → e · x ≡ x) (rid : ∀ {x} →

x · e ≡ x) → e ≡ I↪→

I-unique lid rid = ≡.trans (≡.sym leftId) rid

As expected, the only difference is that CommutativeMonoid0 adds a commutatity axiom. Thus, given
Monoid, it would be more economical to define:

Economically declaring only the new additions to ‘Monoid’

CommutativeMonoid = Monoid extended-by "comm : {x y : Carrier} → x · y ≡ y · x"

As discussed in Section 3.4, to obtain this specification of
CommutativeMonoid in the current implementation of Agda, one would
likely declare a record with two fields —one being a Monoid and the
other being the commutativity constraint— however, this only gives
the appearance of the above specification for consumers; those who
produce instances of CommutativeMonoid are then forced to know
the particular hierarchy and must provide a Monoid value first. It is
a happy coincidence that our system alleviates such an issue; i.e., we
have flattened extensions.

6.3.2. Defining a Concept Only Once

From a library-designer’s perspective, our definition of
CommutativeMonoid has the commutativity property ‘hard coded’
into it. If we wish to speak of commutative magmas —types with
a single commutative operation— we need to hard-code the prop-
erty once again. If, at a later time, we wish to move from having
arguments be implicit to being explicit then we need to track down
every hard-coded instance of the property then alter them —having
them in-sync then becomes an issue. Instead, as shown below, the
system lets us ‘build upon’ the extended-by combinator: We make
an associative list of names and properties, then string-replace the
meta-names op, op’, rel with the provided user names.
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[80] Adam Grabowski and Christoph
Schwarzweller. “On Duplication in
Mathematical Repositories”. In: In-
telligent Computer Mathematics, 10th
International Conference, AISC 2010,
17th Symposium, Calculemus 2010,
and 9th International Conference,
MKM 2010, Paris, France, July 5-
10, 2010. Proceedings. Ed. by Serge
Autexier et al. Vol. 6167. LNCS.
Springer, 2010, pp. 300–314. isbn:
978-3-642-14127-0. doi: 10.1007/978-
3-642-14128-7_26

Writing definitions only once with the ‘postulating’ variational

(V postulating bop prop (using bop) (adjoin-retract t)
= "Adjoin a property PROP for a given binary operation BOP.

PROP may be a string: associative, commutative, idempotent, etc.
Some properties require another operator or a relation; which may
be provided via USING.

ADJOIN-RETRACT is the optional name of the resulting retract morphism.
Provide nil if you do not want the morphism adjoined."
extended-by
(s-replace "op" bop (s-replace "rel" using (s-replace "op'" using
(pcase prop
("associative" "assoc : ∀ x y z → op (op x y) z ≡ op x (op y z)")
("commutative" "comm : ∀ x y → op x y ≡ op y x")
("idempotent" "idemp : ∀ x → op x x ≡ x")
("left-unit" "unitl : ∀ x y z → op e x ≡ e")
("right-unit" "unitr : ∀ x y z → op x e ≡ e")
("absorptive" "absorp : ∀ x y → op x (op' x y) ≡ x")
("reflexive" "refl : ∀ x y → rel x x")
("transitive" "trans : ∀ x y z → rel x y → rel y z → rel x z")
("antisymmetric" "antisym : ∀ x y → rel x y → rel y x → x ≡ z")
("congruence" "cong : ∀ x x' y y' → rel x x' → rel y y' → rel (op x x') (op y

y')")↪→

(_ (error "V-postulating does not know the property “%s”" prop))
)))) :adjoin-retract 'adjoin-retract)

As such, we have a formal approach to the idea that each piece of
mathematical knowledge should be formalised only once [80].
We can extend this database of properties as needed with relative
ease. Here is an example use along with its elaboration.

Example Use

PackageFormer Magma : Set1 where
Carrier : Set
_·_ : Carrier → Carrier → Carrier

RawRelationalMagma = Magma extended-by "_≈_ : Carrier →
Carrier → Set"−→⊕ record↪→

RelationalMagma = RawRelationalMagma postulating "_·_"
"congruence" :using "_≈_"−→⊕ record↪→
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The let View X = X in View · · ·
clauses are a part of the user imple-
mentation of extended-by; they are
used as markers to indicate that a
declaration is a view and so should
not be an element of the current view
constructed by a call to extended-by.

Associated Elaboration

record RawRelationalMagma : Set1 where
field Carrier : Set
field op : Carrier → Carrier → Carrier
toType : let View X = X in View Type ; toType =

record {Carrier = Carrier}↪→

field _≈_ : Carrier → Carrier → Set
toMagma : let View X = X in View Magma ; toMagma =

record {Carrier = Carrier;op = op}↪→

record RelationalMagma : Set1 where
field Carrier : Set
field op : Carrier → Carrier → Carrier
toType : let View X = X in View Type ; toType =

record {Carrier = Carrier}↪→

field _≈_ : Carrier → Carrier → Set
toMagma : let View X = X in View Magma ; toMagma =

record {Carrier = Carrier;op = op}↪→

field cong : ∀ x x' y y' → _≈_ x x' → _≈_ y y' →
_≈_ (op x x') (op y y')↪→

toRawRelationalMagma : let View X = X in View
RawRelationalMagma ; toRawRelationalMagma = record
{Carrier = Carrier;op = op;_≈_ = _≈_}

↪→

↪→

In conjunction with postulating, the extended-by variational makes it tremendously easy to
build fine-grained hierarchies since at any stage in the hierarchy we have views to parent
stages (unless requested otherwise) and the hierarchy structure is hidden from end-users. That is
to say, ignoring the views, the above initial declaration of CommutativeMonoid0 is identical to the
CommutativeMonoid package obtained by using variationals, as follows.

Building fine-grained hierarchies with ease

PackageFormer Empty : Set1 where {- No elements -}
Type = Empty extended-by "Carrier : Set"
Magma = Type extended-by "_·_ : Carrier → Carrier → Carrier"
Semigroup = Magma postulating "_·_" "associative"
LeftUnitalSemigroup = Semigroup postulating "_·_" "left-unit" :using "I"
Monoid = LeftUnitalSemigroup postulating "_·_" "right-unit" :using "I"
CommutativeMonoid = Monoid postulating "_·_" "commutative"

Of course, one can continue to build packages in a monolithic fashion, as shown below.

Group = Monoid extended-by "_−1 : Carrier → Carrier; left−1 : ∀ {x} → (x −1) · x ≡ I;
right−1 : ∀ {x} → x · (x −1) ≡ I"−→⊕ record↪→

After discussing renaming, we return to discuss the loss of relationships when we augment Group with
a commutativity axiom —commutative groups are commutative monoids!

CHAPTER 6. THE PACKAGEFORMER PROTOTYPE



6.3. PRACTICALITY 128

An Abealian monoid is both a com-
mutative monoid and also, simply, a
monoid. The above declaration freely
maintains these relationships: The re-
sulting record comes with a new pro-
jection toCommutativeMonoid, and still
has the inherited projection toMonoid.

That is, it has an optional argument
:adjoin-coretract which can be pro-
vided with t to use a default name or
provided with a string to use a desired
name for the inverse part of a projec-
tion, fromMagma below.

This user implementation of renaming
avoid name clashes for λ-arguments by
using gensyms —generated symbolic
names, “fresh variable names”.
17 For instance, we may define idem-
potent magmas with

renaming "_·_ to _t_"
−→⊕ postulating "_t_" "idempotent"
:adjoin-retract nil

or, equivalently (up to reordering of
constituents), with

postulating "_t_" "idempotent"
−→⊕ renaming "_·_ to _t_"
:adjoin-retract nil

TwoR is just Two but as an Agda
record, so it typechecks.

6.3.3. Renaming

From an end-user perspective, our CommutativeMonoid has one
flaw: Such monoids are frequently written additively rather than mul-
tiplicatively. Such a change can be rendered conveniently:

Renaming Example

AbealianMonoid = CommutativeMonoid renaming "_·_ to _+_"

There are a few reasonable properties that a renaming construction
should support. Let us briefly look at the (operational) properties of
renaming.

Relationship to Parent Packages. Dual to extended-by which
can construct (retract) views to parent modules mechanically, renaming
constructs (coretract) views from parent packages.

Adjoining coretracts —views from parent packages

Sequential = Magma renaming "op to _#_" :adjoin-coretract t

Sequential elaboration

record Sequential : Set1 where
field Carrier : Set
field _#_ : Carrier → Carrier → Carrier

toType : let View X = X in View Type
toType = record {Carrier = Carrier}

toMagma : let View X = X in View Magma
toMagma = record {Carrier = Carrier;op = _#_}

fromMagma : let View X = X in Magma → View
Sequential↪→

fromMagma = λ g227742 → record {Carrier =
Magma.Carrier g227742;_#_ = Magma.op g227742}↪→

Commutativity. Since renaming and postulating both adjoin
retract morphisms, by default, we are led to wonder about the result
of performing these operations in sequence ‘on the fly’, rather than
naming each application. Since P renaming X−→⊕ postulating Y
comes with a retract toP via the renaming and another, distinctly
defined, toP via postulating, we have that the operations commute
if only the first permits the creation of a retract17 .

It is important to realise that the renaming and postulating combi-
nators are user-defined, and could have been defined without adjoin-
ing a retract by default; consequently, we would have unconditional
commutativity of these combinators. The user can make these
alternative combinators as follows:

Alternative ‘renaming’ and ‘postulating’ —with an example use

V-renaming' by = renaming 'by :adjoin-retract nil
V-postulating' p bop (using) = postulating 'p 'bop :using 'using :adjoin-retract nil

IdempotentMagma = Magma postulating' "_t_" "idempotent"−→⊕ renaming' "_·_ to _t_"

Finally, as expected, simultaneous renaming works too, and re-
naming is an invertible operation —e.g., below Magmarr is identical
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Given green, require red

[7] Jacques Carette and Russell
O’Connor. “Theory Presentation
Combinators”. In: Intelligent Com-
puter Mathematics (2012), pp. 202–
215. doi: 10.1007/978-3-642-31374-
5_14
18 For example, to make rings!

to Magma. Simultaneous textual substitution example

PackageFormer Two : Set1 where
Carrier : Set
0 : Carrier
1 : Carrier

TwoR = Two record−→⊕ renaming' "0 to 1; 1 to 0"

(Recall renaming’ performs renaming but does not adjoin retract views.)

Magmar = Magma renaming' "_·_ to op"
Magmarr = Magmar renaming' "op to _·_"

Do-it-yourself. Finally, to demonstrate the accessibility of the system, we show how a generic
renaming operation can be defined swiftly using the primitives mentioned listed in the first table of
this section. Instead of renaming elements one at a time, suppose we want to be able to uniformly
rename all elements in a package. That is, given a function f on strings, we want to map over the
name component of each element in the package. This is easily done with the following declaration.

Tersely forming a new variational

V-rename f = map (λ element → (map-name (λ nom → (funcall f nom))) element)

6.3.4. Unions/Pushouts (and intersections)

But even with these features, using Group from above, we would find
ourselves writing:

CommutativeGroup0 = Group extended-by "comm : {x y : Carrier}
→ x · y ≡ y · x"−→⊕ record↪→

This is problematic: We lose the relationship that every commuta-
tive group is a commutative monoid. This is not an issue of erroneous
hierarchical design: From Monoid, we could orthogonally add a com-
mutativity property or inverse operation; CommutativeGroup0 then
closes this diamond-loop by adding both features, as shown in the
figure to the right. The simplest way to share structure is to union
two presentations:

Commutative
Monoid

Monoid with
inverse

operation

Monoid

Commutative
Group

Unions of packages

CommutativeGroup = Group union CommutativeMonoid−→⊕ record

The resulting record, CommutativeGroup, comes with three derived
fields —toMonoid, toGroup, toCommutativeMonoid— that retain
the relationships with its hierarchical construction. This approach
“works” to build a sizeable library, say of the order of 500 concepts,
in a fairly economical way [7]. The union operation is an instance of a
pushout operation, which consists of 5 arguments —three objects and
two morphisms— which may be included into the union operation as
optional keyword arguments. The more general notion of pushout is
required if we were to combine18 Group with AbealianMonoid, which
have non-identical syntactic copies of Monoid.
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What is a pushout?

Given green, require red, such that ev-
ery candidate cyan has a unique umber

By changing perspective, we
halve the number of inputs to the
pushout construction!
That is, this particular user imple-

mentation realises

X1 union X2 :renaming1 f' :renaming2 g'

as the pushout of the inclusions

f' X1 ∩ g' X2 ↪→ Xi

where the source is the set-wise inter-
section of names. Moreover, when ei-
ther renamingi is omitted, it defaults
to the identity function.
In Lisp, optional keyword arguments
are passed with the syntax :arg val.

? ? ?

Invoke union with
:adjoin-retracti "new-function-name"
to use a new name, or nil instead of
a string to omit the retract —as was
done for extended-by earlier.

The pushout of morphisms f : Z → X and g : Z → Y is, essen-
tially, the disjoint sum of contextsX and Y where embedded elements
are considered ‘indistinguishable’ when they share the same origin in
Z via the ‘paths’ f and g —the pushout generalises the notion of
least upper bound as shown in the figure to the right, by treating
each ‘→’ as a ‘≤’. Unfortunately, the resulting ‘indistinguishable’
elements f(z) ≈ g(z) are actually distinguishable: They may be
the f -name or the g-name and a choice must be made as to which
name is preferred since users actually want to refer to them later on.
Hence, to be useful for library construction, the pushout construction
actually requires at least another input function that provides canon-
ical names to the supposedly ‘indistinguishable’ elements. Hence, 6
inputs are actually needed for forming a usable pushout object.

X Y

Z

P

P ′

At first, a pushout construction needs 5 inputs, to be practical it
further needs a function for canonical names for a total of 6 inputs.
However, a pushout of f : Z → X and g : Z → Y is intended to be
the ‘smallest object P that contains a copy of X and of Y sharing
the common substructure Z’, and as such it outputs two functions
inj1 : X → P, inj2 : Y → P that inject the names of X and Y into P .
If we realise P as a record —a type of models— then the embedding
functions are reversed, to obtain projections P → X and P → Y :
If we have a model of P , then we can forget some structure and
rename via f and g to obtain models of X and Y . For the resulting
construction to be useful, these names could be automated such as
toX : P → X and toY : P → Y but such a naming scheme does not
scale —but we shall use it for default names. As such, we need two
more inputs to the pushout construction so the names of the resulting
output functions can be used later on. Hence, a practical choice of
pushout needs 8 inputs!

Since a PackageFormer is essentially just a signature —a collection
of typed names—, we can make a ‘partial choice of pushout’ to reduce
the number of arguments from 8 to 4 by letting the typed-names ob-
ject Z be ‘inferred’ and encoding the canonical names function into
the operations f and g. The input functions f, g are necessarily sig-
nature morphisms —mappings of names that preserve types— and
so are simply lists associating names of Z to names of X and Y . If
we instead consider f ′ : Z ′ ← X and g′ : Z ′ ← Y , in the opposite
direction, then we may reconstruct a pushout by setting Z to be com-
mon image of f ′, g′, and set f, g to be inclusions. In-particular, the
full identity of Z ′ is not necessarily relevant for the pushout recon-
struction and so it may be omitted. Moreover, the issue of canonical
names is resolved: If x ∈ X is intended to be identified with y ∈ Y
such that the resulting element has z as the chosen canonical name,
then we simply require f ′ x = z = g′ y.

Incidentally, using the reversed directions of f, g via f ′, g′, we can
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? ? ?

Whew, a worked-out example!

The user manual contains full details
and an implementation of intersection,
pullback, as well.

Given green, yield yellow, require red,
form fuchsia

infer the shared structure Z and the canonical name function. Like-
wise, by using toChild : P → Child default-naming scheme, we may
omit the names of the retract functions. If we wish to rename these
retracts or simply omit them altogether, we make them optional ar-
guments.

Before we show the implementation of union, let us showcase an
example that mentions all arguments, optional and otherwise —i.e.,
test-driven development. Besides the elaboration, the commutative
diagram, to the right, informally carries out the union construction
that results in the elaborated code below.

Bimagmas: Two magmas sharing the same carrier

BiMagma = Magma union Magma :renaming1 "op to _+_" :renaming2
"op to _×_" :adjoin-retract1 "left" :adjoin-retract2
"right"

↪→

↪→

Elaboration

record BiMagma : Set1 where
field Carrier : Set
field _+_ : Carrier → Carrier → Carrier

toType : let View X = X in View Type
toType = record {Carrier = Carrier}

field _×_ : Carrier → Carrier → Carrier

left : let View X = X in View Magma
left = record {Carrier = Carrier;op = _+_}

right : let View X = X in View Magma
right = record {Carrier = Carrier;op = _×_}

Carrier
_+_

Carrier
_× _

Carrier

BiMagma
Carrier

_+_
_×_

Magma
Carrier

op

:renaming1 :renaming2

inclusion inc
lus

ion

inc
lus

ion
inclusion

left right

Idempotence. The main reason that the construction is named
‘union’ instead of ‘pushout’ is that, modulo adjoined retracts, it is
idempotent. For example, Magma union Magma ≈ Magma —this is
essentially the previous bi-magma example but we are not distin-
guishing (via :renamingi) the two instances of Magma.

MagmaAgain = Magma union Magma

record MagmaAgain : Set1 where
field Carrier : Set
field op : Carrier → Carrier → Carrier

toType : let View X = X in View Type
toType = record {Carrier = Carrier}

toMagma : let View X = X in View Magma
toMagma = record {Carrier = Carrier;op = op}
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Indeed, the core of the construc-
tion lies in the first 12 lines of the
let* clause; the rest are extra bells-
and-whistles —which could have been
omitted, by the user, for a faster im-
plementation.

The unabridged definition, on the
PackageFormer webpage, has more fea-
tures. In particular, it accepts ad-
ditional keyword toggles that dictate
how it should behave when name
clashes occur; e.g., whether it should
halt and report the name clash or
whether it should silently perform a
name change, according to another
provided argument. The additional
flexibility is useful for rapid experimen-
tation.

Disjointness. On the other extreme, distinguishing all the names
of one of the input objects, we have disjoint sums. In contrast to
the above bi-magma, in the example below, we are not distinguishing
the two instances of Magma ‘on the fly’ via :renamingi but instead
making them disjoint beforehand using primed —which is specified
informally as p primed ≈ p :renaming (λ name → name ++
"'").

Magma' = Magma primed −→⊕ record
SumMagmas = Magma union Magma' :adjoin-retract1 nil−→⊕ record

Elaboration
record SumMagmas : Set1 where

field Carrier : Set
field op : Carrier → Carrier → Carrier

toType : let View X = X in View Type
toType = record {Carrier = Carrier}

field Carrier' : Set
field op' : Carrier' → Carrier' → Carrier'

toType' : let View X = X in View Type
toType' = record {Carrier = Carrier'}

toMagma : let View X = X in View Magma
toMagma = record {Carrier = Carrier';op = op'}

toMagma' : let View X = X in View Magma'
toMagma' = record {Carrier' = Carrier';op' = op'}

Before returning to the diamond problem, we show an implemen-
tation not so that the reader can see some cleverness —not that we
even expect the reader to understand it— but instead to showcase
that a sufficiently complicated combinator, which is not built-in, can
be defined without much difficulty.

(Abridged) Pushout combinator with 4 optional arguments

(V union pf (renaming1 "") (renaming2 "") (adjoin-retract1 t) (adjoin-retract2 t)

= "Union the elements of the parent PackageFormer with those of
the provided PF symbolic name, then adorn the result with two views:
One to the parent and one to the provided PF.

If an identifer is shared but has different types, then crash.

ADJOIN-RETRACTi, for i : 1..2, are the optional names of the resulting
views. Provide NIL if you do not want the morphisms adjoined."

:alter-elements (λ es →
(let* ((p (symbol-name 'pf))

(es1 (alter-elements es renaming renaming1 :adjoin-retract nil))
(es2 (alter-elements ($elements-of p) renaming renaming2

:adjoin-retract nil))
(es' (-concat es1 es2))
(name-clashes (loop for n in (find-duplicates (mapcar #'element-name

es'))↪→

for e = (--filter (equal n (element-name it))
es')↪→

unless (--all-p (equal (car e) it) e)
collect e))

(er1 (if (equal t adjoin-retract1) (format "to%s" $parent)
adjoin-retract1))

(er2 (if (equal t adjoin-retract2) (format "to%s" p)
adjoin-retract2)))

(if name-clashes
(-let [debug-on-error nil]
(error "%s = %s union %s \n\n\t\t → Error:

Elements “%s” conflict!\n\n\t\t\t%s"
$name $parent p (element-name (caar name-clashes))
(s-join "\n\t\t\t" (mapcar #'show-element (car

name-clashes))))))↪→

;; return value
(-concat es'

(and adjoin-retract1 (not er1) (list (element-retract $parent es :new
es1 :name adjoin-retract1)))↪→

(and adjoin-retract2 (not er2) (list (element-retract p ($elements-of
p) :new es2 :name adjoin-retract2)))))))↪→

1. Support for Diamond Hierarchies
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The dual, or opposite, of a binary op-
eration _·_ : X → Y → Z is the op-
eration _·op_ : Y → X → Z defined
by x ·op y = y · x.

A common scenario is extending a structure, say Magma, into orthogonal directions, such as by making
its operation associative or idempotent, then closing the resulting diamond by combining them, to
obtain a semilattice. However, the orthogonal extensions may involve different names and so the
resulting semilattice presentation can only be formed via pushout; below are three ways to form it.

Three ways to get to SemiLattice

Semigroup = Magma postulating "_·_" "associative"
IdempotentMagma = Magma renaming "_·_ to _t_"−→⊕ postulating "_t_" "idempotent"

:adjoin-retract nil↪→

t-SemiLattice = Semigroup union IdempotentMagma :renaming1 "_·_ to _t_"
·-SemiLattice = Semigroup union IdempotentMagma :renaming2 "_t_ to _·_"
↑-SemiLattice = Semigroup union IdempotentMagma :renaming1 "_·_ to _↑_" :renaming2 "_t_ to

_↑_"↪→

2. Application: Granular (Modular) Hierarchy for Rings We will
close with the classic example of forming a ring structure by
combining two monoidal structures. This example also serves
to further showcase how using postulating can make for more
granular, modular, developments.

Additive = Magma renaming "_·_ to _+_"−→⊕
postulating "_+_" "commutative" :adjoin-retract nil
−→⊕ record

↪→

↪→

Multiplicative = Magma renaming "_·_ to _×_"
:adjoin-retract nil−→⊕ record↪→

AddMult = Additive union Multiplicative−→⊕
record↪→

AlmostNearSemiRing = AddMult−→⊕ postulating "_×_"
"distributivel" :using "_+_"−→⊕ record↪→

Elaboration
record AlmostNearSemiRing : Set1 where

field Carrier : Set
field _+_ : Carrier → Carrier → Carrier

toType : let View X = X in View Type
toType = record {Carrier = Carrier}

toMagma : let View X = X in View Magma
toMagma = record {Carrier = Carrier;op = _+_}

field comm : ∀ x y → _+_ x y ≡ _+_ y
x↪→

field _×_ : Carrier → Carrier →
Carrier↪→

toAdditive : let View X = X in View Additive
toAdditive = record {Carrier = Carrier;_+_ =

_+_;comm = comm}↪→

toMultiplicative : let View X = X in View
Multiplicative↪→

toMultiplicative = record {Carrier =
Carrier;_×_ = _×_}↪→

field distl : ∀ x y z → _×_ x (_+_ y z)
≡ _+_ (_×_ x y) (_×_ x z)↪→

This example, as well as mitigating diamond problems, show
that the implementation outlined is reasonably well-behaved.

6.3.5. Duality

Maps between grouping mechanisms are sometimes called views,
which are essentially an internalisation of the variationals in our sys-
tem. A useful view is that of capturing the heuristic of dual concepts,
e.g., by changing the order of arguments in an operation. Classically
in Agda, duality is utilised as follows:
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The ubiquity of duality!
[6] Wolfram Kahl. Relation-Algebraic
Theories in Agda. 2018. url: http:
//relmics.mcmaster.ca/RATH-Agda/
(visited on 10/12/2018)

Admittedly, RATH-Agda’s names
are well-chosen; e.g., value, boundi,
universal to denote a value that is
a lower/upper bound of two given ele-
ments, satisfying a least upper bound
or greatest lower bound universal
property.

1. Define a parameterised module R _·_ for the desired ideas on
the operation _·_.

Example

module R (_·_ : X → Y → Z) where
·-isLeftId : X → Set
·-isLeftId e = ∀ {x} → e · x ≡ x

2. Define a shallow (parameterised) module Rop _·_ that essen-
tially only opens R _·op_ and renames the concepts in R with
dual names.

Continuing...

module Rop (_·_ : X → Y → Z) where
public open R _·_

renaming (·-isLeftId to ·-isRightId)

The RATH-Agda [6] library performs essentially this approach,
for example for obtaining UpperBounds from LowerBounds in the
context of an ordered set. Moreover, since category theory can serve
as a foundational system of reasoning (logic) and implementation
(programming), the idea of duality immediately applies to produce
“two for one” theorems and programs.

Unfortunately, this means that any record definitions in R must
have their field names be sufficiently generic to play both roles of the
original and the dual concept. However, well-chosen names come at
an upfront cost: One must take care to provide sufficiently generic
names and account for duality at the outset, irrespective of whether
one currently cares about the dual or not; otherwise when the dual
is later formalised, then the names of the original concept must be
refactored throughout a library and its users. This is not the case
using PackageFormer.

Consider the following heterogeneous algebra —which is essentially
the main example of Section 6.2 but missing the associativity field.

Left unital actions

PackageFormer LeftUnitalAction : Set1 where
Scalar : Set
Vector : Set
_·_ : Scalar → Vector → Vector
1 : Scalar
leftId : {x : Vector} → 1 · x ≡ x

-- Let's reify this as a valid Agda record declaration
LeftUnitalActionR = LeftUnitalAction−→⊕ record

Informally, one now ‘defines’ a right unital action by duality, flipping the binary operation and

renaming leftId to be rightId. Such informal parlance is in-fact nearly formally, as the following:

Right unital actions —mechanically by duality

RightUnitalActionR = LeftUnitalActionR flipping "_·_" :renaming "leftId to rightId"−→⊕ record
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[81] William M. Farmer, Joshua D.
Guttman, and F. Javier Thayer.
“Little theories”. In: Automated
Deduction—CADE-11. Ed. by Deepak
Kapur. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1992, pp. 567–581.
isbn: 978-3-540-47252-0

Of course the resulting representation is semantically identical to the previous one, and so it is fur-
nished with a toParent mapping:

forget : RightUnitalActionR → LeftUnitalActionR
forget = RightUnitalActionR.toLeftUnitalActionR

Likewise, for the RATH-Agda library’s example from above, to define semi-lattice structures by dual-
ity:

import Data.Product as P

PackageFormer JoinSemiLattice : Set1 where
Carrier : Set
_v_ : Carrier → Carrier → Set

refl : ∀ {x} → x v x
trans : ∀ {x y z} → x v y → y v z → x v z
antisym : ∀ {x y} → x v y → y v x → x ≡ y

_t_ : Carrier → Carrier → Carrier
t-lub : ∀ {x y z} → x v z → y v z → (x t y) v z
t-lub˘ : ∀ {x y z} → (x t y) v z → x v z P.× y v z

JoinSemiLatticeR = JoinSemiLattice record
MeetSemiLatticeR = JoinSemiLatticeR flipping "_v_" :renaming "_t_ to _u_; t-lub to u-glb"

In this example, besides the map from meet semi-lattices to join semi-lattices, the types of the dualised
names, such as u-glb, are what one would expect were the definition written out explicitly:

Checking the types of the duals

module woah (M : MeetSemiLatticeR) where
open MeetSemiLatticeR M

lub_dual_type : ∀ {x y z} → z v x → z v y → z v (x u y)
lub_dual_type = u-glb

trans_dual_type : let _w_ = λ x y → y v x
in ∀ {x y z} → x w y → y w z → x w z

trans_dual_type = trans

6.3.6. Extracting Little Theories

The extended-by variational allows Agda users to easily employ the
tiny theories [81] approach to library design: New structures are
built from old ones by augmenting one concept at a time —as shown
below— then one uses mixins such as union to obtain a complex
structure. This approach lets us write a program, or proof, in a
context that only provides what is necessary for that program-proof
and nothing more. In this way, we obtain maximal generality for
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10/19/2018)

[82] Eric Freeman and Elisabeth Rob-
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2014. isbn: 978-0-596-00712-6. url:
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re-use! This approach can be construed as the interface segregation
principle [41, 82] : No client should be forced to depend on methods it
does not use.

Tiny Theories Example

PackageFormer Empty : Set1 where {- No elements -}
Type = Empty extended-by "Carrier : Set"
Magma = Type extended-by "_·_ : Carrier → Carrier → Carrier"
CommutativeMagma = Magma extended-by "comm : {x y : Carrier} → x · y ≡ y · x"

However, life is messy and sometimes one may hurriedly create
a structure, then later realise that they are being forced to depend
on unused methods. Rather than throw a not implemented excep-
tion or leave them undefined, we may use the keeping variational
to extract the smallest well-formed sub-PackageFormer that
mentions a given list of identifiers. For example, suppose we
quickly formed Monoid monolithicaly as presented at the start of
Section 6.3.1, but later wished to utilise other substrata. This is
easily achieved with the following declarations.

Extracting Substrata from a Monolithic Construction

Empty' = Monoid keeping ""
Type' = Monoid keeping "Carrier"
Magma' = Monoid keeping "_·_"
Semigroup' = Monoid keeping "assoc"
PointedMagma' = Monoid keeping "I; _·_"

-- This is just “ keeping: Carrier; _·_; I ”

Even better, we may go about deriving results —such as theorems or
algorithms— in familiar settings, such as Monoid, only to realise that
they are written in settings more expressive than necessary.
Such an observation no longer need to be found by inspection, instead
it may be derived mechanically.

Specialising a result from an expressive setting to the
minimal necessary setting

LeftUnitalMagma = Monoid keeping "I-unique"−→⊕ record

This expands to the following theory, minimal enough to derive I-unique.
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� People should enter terse, readable,
specifications that expand into useful,
typecheckable, code that may be daunt-
ingly larger in textual size. 	

[7] Jacques Carette and Russell
O’Connor. “Theory Presentation
Combinators”. In: Intelligent Com-
puter Mathematics (2012), pp. 202–
215. doi: 10.1007/978-3-642-31374-
5_14

[75] Jacques Carette et al. The Math-
Scheme Library: Some Preliminary
Experiments. 2011. arXiv: 1106 .
1862v1 [cs.MS]
Unlike other systems, PackageFormer
does not come with a static set of mod-
ule operators —it grows dynamically,
possibly by you, the user.
MathScheme’s design hierarchy raised
certain semantic concerns that we
think are out-of-place, but we chose
to leave them as is —e.g., one would
think that a “partially ordered magma”
would consist of a set, an order rela-
tion, and a binary operation that is
monotonic in both arguments; how-
ever, PartiallyOrderedMagma instead
comes with a single monotonicity ax-
iom which is only equivalent to the two
monotonicity claims in the setting of a
monoidal operation.

Elaboration

record LeftUnitalMagma : Set1 where

field
Carrier : Set
_·_ : Carrier → Carrier → Carrier
I : Carrier
leftId : {x : Carrier} → I · x ≡ x

I-unique : ∀ {e} (lid : ∀ {x} → e · x ≡ x) (rid : ∀ {x} → x · e ≡ x) → e ≡ I
I-unique lid rid = ≡.trans (≡.sym leftId) rid

Surprisingly, in some sense, keeping let’s us apply the interface seg-
regation principle, or ‘little theories’, after the fact —this is also
known as reverse mathematics.

6.3.7. 200+ theories —one line for each

In order to demonstrate the immediate practicality of the ideas
embodied by PackageFormer, we have implemented a list of math-
ematical concepts from universal algebra —which is useful to com-
puter science in the setting of specifications. The list of structures
is adapted from the source of a MathScheme library, which in turn
was inspired by web lists of Peter Jipsen, John Halleck, and many
others from Wikipedia and nLab [7, 75] . Totalling over 200 theo-
ries which elaborate into nearly 1500 lines of typechecked Agda, this
demonstrates that our systems works; the over 80% source savings
speak for themselves.

The 200+ one line specifications and their ~1500 lines of elab-
orated typechecked Agda can be found on PackageFormer’s
webpage.

https://alhassy.github.io/next-700-module-systems

If anything, this elaboration demonstrates our tool as a useful
engineering result. The main novelty being the ability for li-
brary users to extend the collection of operations on packages,
modules, and then have it immediately applicable to Agda, an
executable programming language.

Since the resulting expanded code is typechecked by Agda,
we encountered a number of places where non-trivial assumptions ac-
cidentally got-by the MathScheme team. For example, in a number
of places, an arbitrary binary operation occurred multiple times lead-
ing to ambiguous terms, since no associativity was declared. Even if
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[83] Edwin Brady. Type-driven De-
velopment With Idris. Manning,
2016. isbn: 9781617293023. url:
http : / / www . worldcat . org / isbn /
9781617293023
[84] Sam Lindley and Conor McBride.
“Hasochism: the pleasure and pain
of dependently typed Haskell pro-
gramming”. In: Proceedings of the
2013 ACM SIGPLAN Symposium on
Haskell, Boston, MA, USA, Septem-
ber 23-24, 2013. Ed. by Chung-chieh
Shan. ACM, 2013, pp. 81–92. isbn:
978-1-4503-2383-3. doi: 10 . 1145 /
2503778.2503786. url: http://dl.acm.
org/citation.cfm?id=2503778

Generated modules are necessarily
‘flattened’ for typechecking with Agda
—see Section 6.3.1.

Moreover, all of this happens in
the background preceeding the ussual
typechecking command, C-c C-l.

there was an implicit associativity criterion, one would then expect
multiple copies of such structures, one axiomatisation for each paren-
thesisation. Nonetheless, we are grateful for the source file provided
by the MathScheme team.

6.4. Contributions: From Theory to
Practice

PackageFormer implements the ideas of Chapters 2, 3 and 5. As
such, as an editor extension, it is mostly language agnostic and
could be altered to work with other languages such as Coq, Idris
[83], and even Haskell [84]. The PackageFormer implementation has
the following useful properties.

1. Expressive & extendable specification language for the library
developer.

� Our meta-primitives give way to the ubiquitous module
combinators of the table on page 123.

� E.g., from a theory we can derive its homomorphism type,
signature, its termtype, etc; we generate useful construc-
tions inspired from universal algebra and seen in the wild
—see Chapter 3.

� An example of the freedom allotted by the extensible na-
ture of the system is that combinators defined by library
developers can, say, utilise auto-generated names when
names are irrelevant, use ‘clever’ default names, and al-
low end-users to supply desirable names on demand using
Lisps’ keyword argument feature —see section 6.3.4.

2. Unobtrusive and a tremendously simple interface to the end
user.

� Once a library is developed using (the current implementa-
tion of) PackageFormer, the end user only needs to refer-
ence the resulting generated Agda, without any knowledge
of the existence of PackageFormer.
� We demonstrates how end-users can build upon a library

by using one line specifications, by reducing over 1500 lines
of Agda code to nearly 200 specifications using PackageFormer
syntax.

3. Efficient: Our current implementation processes over 200 speci-
fications in ∼ 3 seconds; yielding typechecked Agda code which
is what consumes the majority of the time.
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Over 200 modules are formalised
as one-line specifications!

In the online user manual, we show
how to formulate module combina-
tors using a simple and straightforward
subset of Emacs Lisp —a terse intro-
duction to Lisp is provided.

4. Pragmatic: Common combinators can be defined for library
developers, and be furnished with concrete syntax for use by
end-users.

5. Minimal: The system is essentially invariant over the under-
lying type system; with the exception of the meta-primitive
:waist which requires a dependent type theory to express ‘un-
bundling’ component fields as parameters.

6. Demonstrated expressive power and use-cases.

� Common boiler-plate idioms in the standard Agda library,
and other places, are provided with terse solutions using
the PackageFormer system.

◦ E.g., automatically generating homomorphism types
and wholesale renaming fields using a single function
—see Section .

7. Immediately useable to end-users and library developers.

� We have provided a large library to experiment with —
thanks to the MathScheme group for providing an adapt-
able source file.

Put simply, PackageFormer provides a tiny (yet extensible) do-
main specific language —whose concrete syntax is similar to Agda’s
existing syntax— that represents packaged structures and offers a
declarative interface to obtain related structures; all the while rele-
gating typechecking to an already existing and trusted system: Agda.

Recall that we alluded —in the introduction to Section 6.3— that
we have a categorical structure consisting of PackageFormers as ob-
jects and those variationals that are signature morphisms. While this
can be a starting point for a semantics for PackageFormer, we will
instead pursue a mechanised semantics. That is, we shall encode
(part of) the syntax of PackageFormer as Agda functions, thereby
giving it not only a semantics but rather a life in a familar setting
and lifting it from the status of editor extension to language library.
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7. The Context Library

The PackageFormer framework is a useful tool to experiment with uncommon ways to pack-
age things together, but is relies on shuffling (untyped) strings and lacks a solid semantical
basis. Instead of adding semantics after-the-fact, with the lessons learned from developing
PackageFormer, we go on in this section to produce Context, an extensible do-it-yourself pack-
aging mechanism for Agda within Agda1.

We will show an automatic technique for unbundling data at will; thereby resulting in
bundling-independent representations and in delayed unbundling. Our contributions are to show:

1. Languages with sufficiently powerful type systems and meta-programming can conflate
record and term datatype declarations into one practical interface. In addition, the con-
tents of these grouping mechanisms may be function symbols as well as propositional
invariants —an example is shown at the end of Section 7.3. We identify the problem and
the subtleties in shifting between representations in Section 7.2.

2. Parameterised records can be obtained dynamically, on-demand, from non-parameterised
records (Section 7.3) .

� As with Magma0, the traditional approach2 to unbundling a record requires the use
of transport along propositional equalities, with trivial reflexivity proofs —via the
Σ-padding anti-pattern of Section 3.1.3. In Section 7.3, we develop a combinator,
_:waist_, which removes the boilerplate necessary at the type specialisation location
as well as at the instance declaration location.

3. We mechanically regain ubiquitous data structures such as N, Maybe, List as the term
datatypes of simple pointed and monoidal theories (Section 7.5).

For brevity, and accessibility, the definitions in this chapter are presented in an informal form
alongside a concrete implementation without explanation of implementation details.

1 A ~30 minute lecture on Context, given online for the Agda Implementors Meeting 2020, may be viewed at
https://youtu.be/lSIFM5lhnWc.

2 Jason Gross, Adam Chlipala, and David I. Spivak. Experience Implementing a Performant Category-Theory
Library in Coq. 2014. arXiv: 1401.7694v2 [math.CT]
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A complicated Agda macro

accessible dashed pseudo-code

Code

... actual Agda implementation,
requiring intimate familarity with reflection in Agda ...

Enough is shown to communicate the techniques and ideas, as well as to make the resulting
library usable. The details, which users do not need to bother with, are nonetheless presented
so as to show how accessible these techniques are —in that, they do not require more than 15
lines per core concept. The full code, listing the Context library, may be found in Appendix A.
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7.1. A Tutorial on Reflection

Reflection is the ability to convert program code into an abstract
syntax, a data structure that can be manipulated like any other.
Consider, for example, the tedium of writing a decidable equality
for an enumerated type. Besides being tedious and error-prone, the
inexpressibility of what should be a mechanically-derivable concept
obscures the corresponding general principle underlying it, thus fore-
going any machine assistance in ensuring any correctness or safety-
ness guarantees. Reflection allows a more economical and disciplined
approach.

It is the aim of this section to show how3 to get started with re-
flection in Agda. To the best of my knowledge there is no up to
date tutorial on this matter and, as such, we take this as an op-
pertunity to provide such a tutorial. Consequently, this section is
reminicient of Chapter 2 on the introduction to Agda, and aims to
be a self-contained presentation —occassionally demonstraing how
various tasks may be accompalished, even though such tasks may
not necessairly make an appearence in the rest of the thesis.

Necessary imports

module gentle-intro-to-reflection where

import Level as Level

open import Reflection hiding (name; Type)
open import Reflection.Term
open import Reflection.Pattern

open import Relation.Binary.PropositionalEquality
hiding ([_])↪→

open import Relation.Unary using (Decidable)
open import Relation.Nullary

open import Data.Unit
open import Data.Nat as Nat hiding (_u_)
open import Data.Bool renaming (Bool to B)
open import Data.Product
open import Data.List as List
open import Data.Char as Char
open import Data.String as String

There are four main types in Agda’s reflection mechanism: Name,
Arg, Term, TC. We will learn about them with the aid of this fol-
lowing simple enumerated typed, as well as other standard types.

Red, Green, Blue

data RGB : Set where
Red Green Blue : RGB

7.1.1. NAME —Type of known identifiers

Name is the type of quoted identifiers, Agda names. Elements of this
type can be formed and pattern matched using the quote keyword. It
comes equipped with equality, ordering, and a show function. Names,
along with numbers and strings, constitute the Literal type.

Constructing & Pattern Matching on Names

a-name : Name
a-name = quote N

isNat : Name → B
isNat (quote N) = true
isNat _ = false

Quote will not work on function arguments; the identifier must not
be a variable. This limitation is why we have a ‘reflection mechanism’
and not a ‘macro mechanism’.

Nope!

-- bad : Set → Name
-- bad s = quote s {- s is not known -}

3 The Agda List of Tutorials has my own reflection tutorial, which is perhaps
the most up to date presentation. Written in 2019, it is already outdated
—discussing features no longer in the language. As such, we present in a very
lax, and informal tone, a small enough tutorial on reflection for our purposes.
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Names can be shown as strings, but are fully qualified. It would
be nice to have, say, Red be shown as just “RGB.Red”. To do so, we
may introduce some ‘programming’ helpers to treat Agda strings as
if they where Haskell/C strings, and likewise to treat predicates as
decidables. After which, we can show unqualified names by obtain-
ing the module’s name then dropping it from the data constructor’s
name.

Showing unqualified names

module-of : Name → String
module-of n = takeWhile (toDec (λ c → not (c Char.== '.')))

〈S〉 showName n

_ : module-of (quote Red) ≡ "gentle-intro-to-reflection"
_ = refl

strName : Name → String
strName n = drop (1 + String.length (module-of n))

〈S〉 showName n
{- The “1 +” is for the “.” separator in qualified names. -}

_ : strName (quote Red) ≡ "RGB.Red"
_ = refl

Showing names

_ : showName (quote _≡_)
≡ "Agda.Builtin.Equality._≡_"

_ = refl

_ : showName (quote Red)
≡ "gentle-intro-to-reflection.RGB.Red"

_ = refl

Programming helpers

{- Like “$” but for strings. -}
_〈S〉_ : (List Char → List Char) → String →

String↪→

f 〈S〉 s = fromList (f (toList s))

{- This should be in the standard library; I could
not locate it. -}↪→

toDec : ∀ {`} {A : Set `} → (p : A → B) →
Decidable {`} {A} (λ a → p a ≡ true)↪→

toDec p x with p x
toDec p x | false = no λ ()
toDec p x | true = yes refl

Finally, if we have a name, we can obtain its fixity, which consists
of its associativity —one of assocl, assocr, non-assoc— and its
precedence —either unrelated or related n for some ‘float’ number
n. Having fractional precedence levels ensures that precedences are
dense: An operator precedence can always be squeezed between any
two existing precedences.

Necessary imports

open import Data.Float as Float using (fromN)

_ : getFixity (quote _+_)
≡ fixity assocl (related (Float.fromN 6))

_ = refl

A summary of the reflection interface exposed thus far is in the
table below. We use a prefix ‘?’ to mark elements that may be useful
for programming with reflection, but are not part of Agda’s standard
library for reflection. We use this star convention in the remaining
sections as well.

Name The type of program identifiers (excluding variables)
quote Constructor for Name, takes an identifier as argument
showName Get fully qualified string representation of a name
_〈S〉_ ?Lift a function on lists of chars to a function on strings
toDec ?Lift a Boolean into a Decidable
module-of ?String name of the parent module of a given Name argument
strName ?Unqualified string representation of a name
getFixity Get the associtivity and precedence of a name
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7.1.2. Arg —Type of arguments

Arguments in Agda may be hidden or computationally irrelevant.
This information is captured by the Arg type.

τ -Argument ∼= Visibility × Relevance × τ

-- Arguments can be (visible), {hidden}, or {|instance|}
data Visibility : Set where

visible hidden instance' : Visibility

-- Arguments can be relevant or irrelevant:
data Relevance : Set where
relevant irrelevant : Relevance

-- Arguments are characterised by their visibility & relevance
data ArgInfo : Set where
arg-info : (v : Visibility) (r : Relevance) → ArgInfo

-- An argument of type τ is a value of τ and info about it
data Arg (τ : Set) : Set where

arg : (i : ArgInfo) (x : τ) → Arg τ

Handy helpers for making argument values

{- visible relevant argument -}
vra : {τ : Set} → τ → Arg τ
vra = arg (arg-info visible relevant)

{- hidden relevant argument -}
hra : {τ : Set} → τ → Arg τ
hra = arg (arg-info hidden relevant)

Handy helpers for making variables

{- visible relevant variable -}
vrv : (debruijn : N) (args : List (Arg Term))

→ Arg Term
vrv n args = vra (var n args)

{- hidden relevant variable -}
hrv : (debruijn : N) (args : List (Arg Term))

→ Arg Term
hrv n args = hra (var n args)

So much for reflected arguments.

In the next section we will turn to variables —which live in the Term
datatype. Variables are arguments —i.e., entities with a visibility and
relevance— whose payload is a natural number (along with a list of
arguments); this nameless variables approach is known as De Bruijn
indexing. The index n refers to the argument that is n locations away
from ‘here’.

Given a ‘usual’ λ-term t, its De Bruijn index presentation is
∅ /0 t where the Γ /n s has Γ denoting “the bound variables en-
countered thus far” and n denotes “the depth, how many lambdas
have been encountered”. For example,

∅ /0 (λ f. λ g. λ x. f x (g x)) = λ λ λ 2 0 (1 0)

Notice that the first ‘2’ refers to the variable bound by the λ that is
“2 lambdas away”.

Mechanically going nameless

-- The τ i are existing λ-terms
Usual-λ-Term ::= x | τ1 τ2 | (λ x • τ3)

-- Treating contexts Γ as functions, as in Ch2,
-- with comma for function extension (patching)

-- For variables x
Γ /n x = if x ∈ domain Γ then n - Γ(x) else x fi

-- For abstractions
Γ /n (λ x • e) = λ (Γ, (x, n)) /n+1 e

-- For applications
Γ /n (s t) = (Γ /n s) (Γ /n t)

Arg τ A value of type τ along with its visibility and relevance
Example: arg (arg-info visibile relevant) 3

vra e ?Constructs a visibile relevant argument with value e
hra e ?Constructs a hidden relevant argument with value e
vrv n args ?Constructs a visible relevant variable with debruijn index n and arguments args
hrv n args ?Constructs a hidden relevant variable with debruijn index n and arguments args
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A variable has a De Bruijn index and
may be applied to arguments.

Constructors and definitions may be
applied to a list of arguments.

λ-abstractions bind one variable, t
is the variable name along with the
λ-body.

? ? ?

Abs A ∼= String × A

Sort ∼= LevelTerm | N | unknown

Clause ∼= List (Arg Pattern) × Term
. | List (Arg Pattern

Pattern ∼= “con Name (List (Arg Pattern))”
. | Literal |“proj Name”
. | “absurd” | “var String”

The reflected term could be pre-
sented more compactly by invoking
quoteTerm in the AST.

The above is not the section "l" ≡_ !
Sections are syntactic abbreviations
for λ-abstractions! Keep reading ;-)

7.1.3. Term —Type of terms

The quoteTerm keyword is used to turn a well-typed fragment of code
—concrete syntax— into a value of the Term datatype —abstract
syntax tree (AST). Before any examples, here is the definition of
Term.

Abstract Syntax Trees —Reflected Terms

data Term where

var : (x : N) (args : List (Arg Term)) → Term

con : (c : Name) (args : List (Arg Term)) → Term
def : (f : Name) (args : List (Arg Term)) → Term

lam : (v : Visibility) (t : Abs Term) → Term
pat-lam : List Clause → List (Arg Term) → Term

-- Telescopes, or function types; λ-abstraction for types.
pi : (a : Arg Type) (b : Abs Type) → Term

-- “Set n” or some term that denotes a type
agda-sort : (s : Sort) → Term

-- Metavariables; introduced via quoteTerm
meta : (x : Meta) → List (Arg Term) → Term

-- Literal ∼= N | Word64 | Float | Char | String | Name |
Meta↪→

lit : (l : Literal) → Term

-- Items not representable by this AST; e.g., a hole.
unknown : Term {- Treated as '_' when unquoting. -}

An example reflected term is in the following snippet. Even though
the concrete syntax for propositional equalities takes two visible
relevant arguments —the left side and right side—, the resulting
abstract syntax tree exposes the fact that there are actually an ad-
ditional two hidden relevant arguments that happen to be inferred:
The common type of the explicit arguments and the level of said
type. The propositional equality is a defined name; whose hidden
arguments also happen to be defined names, whereas its visibile ar-
guments are literal strings.

Reflecting a partially-applied type

_ : quoteTerm _≡_
≡ def (quote _≡_) []

_ = refl

_ : quoteTerm (_≡_ "l")
≡ def (quote _≡_) ( hra (quoteTerm Level.zero)

:: hra (quoteTerm String)
:: vra (quoteTerm "l")
:: [])

_ = refl
Reflecting a fully-applied type

_ : quoteTerm ("l" ≡ "r") ≡ def (quote _≡_)
( hra (def (quote Level.zero) [])
:: hra (def (quote String) [])
:: vra (lit (string "l"))
:: vra (lit (string "r"))
:: [])

_ = refl
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A constructor, well, constructs a value
of an algebraic data type; whereas a
defined name is a (possibly nullary)
user-defined function (including type
formers). Unlike functions, construc-
tors have no computation, reduction,
rules.

As discussed in the previous section, a
De Bruijn index n refers to the lambda
variable that is “n lambdas away” from
its use site. For example, vrv 1 means
starting at the position where vrv 1
occurs in the text, go 1 lambdas away
thereby getting the variable x: The
first lambda away is (y : Type) and so
the second lambda away is (x : Type).
(Scoped declarations are an abbrevia-
tion for multiple declarations, as dis-
cussed in Chapter 2.)

Eek! Reflected λs are untyped!
We’ll return to this later!

The application, f a, is represented as
the variable 0 lambdas away from the
body applied to the variable 1 lambdas
away from the body.

Besides defined names and literals, we may also reflect constructors
and use polymorphism; as shown below.

Constructors and Polymorphism

_ : quoteTerm 1 ≡ lit (nat 1)
_ = refl

_ : quoteTerm (suc zero)
≡ con (quote suc) (vra (quoteTerm zero) :: [])

_ = refl

_ : quoteTerm true ≡ con (quote true) []
_ = refl

_ : ∀ {level : Level.Level}{Type : Set level} (x y : Type)
→ quoteTerm (x ≡ y)
≡ def (quote _≡_)

(hrv 3 [] :: hrv 2 [] :: vrv 1 [] :: vrv 0 [] :: [])

_ = λ x y → refl

hi

Reflecting a λ

_ : quoteTerm (λ (x : B) → x)
≡ lam visible (abs "x" (var 0 []))

_ = refl

With the above example mentioning variables, it is natural to con-
sider representing λ-abstractions as Term values. For example, a
simple identity function, say, on the Booleans (λx : B • x) consists of
a lambda with a visible abstract argument named "x" along with a
body merely being the 0-nearest bound variable, applied to an empty
list of arguments. Below is a slightly more complex example.

Reflecting a function application operator —brutally

_ : quoteTerm (λ (a : N) (f : N → N) → f a)
≡ lam visible (abs "a"

(lam visible (abs "f"
(var 0 (arg (vra (var 1 []) :: [])))))

_ = refl

λs with visibile and hidden arguments

infixr 5 λv_7→_ λh_7→_

λv_7→_ λh_7→_ : String → Term → Term
λv x 7→ body = lam visible (abs x body)
λh x 7→ body = lam hidden (abs x body)
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Much easier on the eyes, hands, and
brains!

Delicious, delicious, (syntactic) sugar!

λ-terms are governed by the rules
below. Such terms are formed by
the λ-abstraction rule: If E : β
whenever x : α, then (λx → E) :
(α → β). Their ‘computation’ is
captured by the β-rule and ‘δefinition
lookup’ is captured by the δ-rule.

η-rule: (λx→ f x) = f
β-rule: (λx→ E) v = E[x := v]

δ-rule: f v = E[x := v] for f = (λx→ E)

This is rather messy, but it can be made more readable by the aid of
some syntactic sugar.

Reflecting a function application operator —elegantly

_ : quoteTerm (λ (a : N) (f : N → N) → f a)
≡ λv "a" 7→ λv "f" 7→ var 0 [ vra (var 1 []) ]

_ = refl

Using these syntactic abbreviation, we can quickly compare how
λ-arguments can be “shunted” into a quotation, as follows for the
constant function.

Shunting the “waist” of a constant function

_ : {A B : Set} → quoteTerm (λ (a : A) (b : B) → a)
≡ λv "a" 7→ (λv "b" 7→ var 1 [])

_ = refl

_ : quoteTerm (λ {A B : Set} (a : A) (_ : B) → a)
≡ λh "A" 7→ λh "B" 7→ λv "a" 7→ λv "_" 7→ var 1 []

_ = refl

We can now return to the above remark about reflecting sections: For
a binary operation _⊕_ : α → β → γ, its left section by any value
a : α is the function (λ b → a ⊕ b) : β → γ, which is generally
denoted by a ⊕_ or, informally by (a⊕). Likewise for right sections.

Left Sections: No λv after normalisation

_ : quoteTerm ("l" ≡_)
≡ def (quote _≡_)

( hra (quoteTerm Level.zero)
:: hra (quoteTerm String)
:: vra (quoteTerm "l")
:: [])

_ = refl

Right Sections: Required λv

_ : quoteTerm (_≡ "r")
≡ λv "section" 7→

def (quote _≡_)
( hra (quoteTerm Level.zero)
:: hra (quoteTerm String)
:: vra (var 0 [])
:: vra (quoteTerm "r")
:: [])

_ = refl

As the above example shows, quotation automatically performs η-
reduction. The relationships of quoteTerm with λ’s governing rules
are summarised as follows —including the above ‘argument-shunting’
observation.

Helper for concrete examples below

id : {A : Set} → A → A
id x = x

Shunting Law —“quoteTerm computation rule”

quoteTerm (λ (x : τ) → e) ≡ λv "x" 7→ quoteTerm e
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A relationship between quote and
quoteTerm!

Local names are not considered top-
level defined names.

Eta Law

quoteTerm (λ x → f x) ≡ quoteTerm f

η in action

_ : quoteTerm (λ (x : N) → id x)
≡ def (quote id) (hra (quoteTerm N) :: [])

_ = refl

Beta Law

quoteTerm typechecks and βη-normalises its argument
before yielding a Term value.

β in action!

_ : quoteTerm ((λ x → x) "nice")
≡ lit (string "nice")

_ = refl

No Delta Law

quoteTerm does no δ-reduction: Function definitions are not
elaborated.

δ not in action!
_ : quoteTerm (id "a")

≡ def (quote id)
( hra (quoteTerm String)
:: vra (quoteTerm "a")
:: [])

_ = refl

Since δ-reduction does not happen, known names f in a quoted
term are denoted by a quote f —since no δefinitional elaboration
happens— in the AST representation; as shown below.

No δ-reduction for top-level defined names

f : N → N
f x = x

_ : quoteTerm f ≡ def (quote f) []
_ = refl

In contrast, names that vary are denoted by a var term constructor
in the AST representation.

Names that vary are reflected as var terms

module _ {A B : Set} {f : A → B} where

_ : quoteTerm f ≡ var 0 []
_ = refl

lets give rise to vars

_ : let f1 : N → N; f1 x = x
in quoteTerm f1 ≡ λv "x" 7→ var 0 []

_ = refl

As such, we could form a module and let rules for quoteTerm —
e.g., the latter could be let x = E in quoteTerm P = quoteTerm
(P[x := E]).

quoteTerm Reify concrete Agda syntax as Term values, ASTs
λv_7→_ and λh_7→_ ?Make lambda Term values with visibile, or hidden, arguments
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Since TC : ∀ {`} → Set ` → Set `
is a monad, we may use do-notation
when forming typechecking computa-
tions.

Warning: There’s a freshName :
String → TC Name primitive, which
is, currently, mostly useless: It seems
that the scope checker runs before any
reflection code and so any names ex-
posed by reflection code are “not in
scope” when the scope checker runs.
Since scope checking is a crucial com-
ponent of type checking, a possible
workaround would be to have multiple
phases of scope and type checking with
message passing occurring between the
checkers.

checkType checks a term against a
given type. This may resolve implicit
arguments in the term, so a new refined
term is returned.

For declareDef, the function must
be defined later using defineFun. For
defineFun, the function may have been
declared using declareDef or with an
explicit top-level type signature.

7.1.4. Metaprogramming with the Type-Checking
Monad TC

A monadic interface to Agda’s ‘T’ype‘C’hecking utility is available
through the TC type former. Below are a few notable (postulated)
bindings to the typechecking utility; the offical Agda documentation
pages mention further primitives for the current context, type errors,
and metavariables.

Interface to Agda’s Typechecker

{- Take what you have and try to make it fit
into the current goal. -}

unify : (have : Term) (goal : Term) → TC >

{- Try first computation;
if it crashes with a type error, try the second. -}

catchTC : ∀ {a} {A : Set a} → TC A → TC A → TC A

{- Infer the type of a given term. -}
inferType : Term → TC Type

{- Check a term against a given type. -}
checkType : Term → Type → TC Term

{- Compute the normal form of a term. -}
normalise : Term → TC Term

{- Quote a value, returning the corresponding Term. -}
quoteTC : ∀ {a} {A : Set a} → A → TC Term

{- Unquote a Term, returning the corresponding value. -}
unquoteTC : ∀ {a} {A : Set a} → Term → TC A

{- Declare a new function of the given type. -}
declareDef : Arg Name → Type → TC >

{- Define a declared function. -}
defineFun : Name → List Clause → TC >

{- Get the type of a defined name. -}
getType : Name → TC Type

{- Get the definition of a defined name. -}
getDefinition : Name → TC Definition

TC computations, or metaprograms, can be run by declaring them
as macros or by unquoting. Let us begin with the former.

7.1.5. Unquoting —Making new functions and types

Recall our RGB example type was a simple enumeration consisting of
Red, Green, Blue. Consider the singleton type, predicate, IsRed
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For readability, let’s quote the relevant
parts.

whose only inhabitant is Red. The name Red completely determines
this datatype; so let’s try to generate it mechanically. Unfortunately,
as far as I could tell, there is currently no way to unquote data decla-
rations. As such, we’ll settle for its isomorphic functional formulation.
Below, the unquoteDecl keyword allows us to obtain a Name value,
say IsRed. We then quote the desired type, τ , declare a function of
that type, then define it using the provided Name.

Using Agda’s syntactic sugar

data IsRed : RGB → Set where
yes : IsRed Red

No sugar

IsRed : RGB → Set
IsRed x = x ≡ Red

Quoted abbreviations

‘`0 : Arg Term
‘`0 = hra (def (quote Level.zero) [])

‘RGB : Arg Term
‘RGB = hra (def (quote RGB) [])

‘Red : Arg Term
‘Red = vra (con (quote Red) [])

Unquoting a singleton type predicate

unquoteDecl IsRed =
do τ ← quoteTC (RGB → Set)

declareDef (vra IsRed) τ
defineFun IsRed

[ clause [ vra (var "x") ]
(def (quote _≡_)

(‘`0 :: ‘RGB :: ‘Red :: vrv 0 [] :: []))]

Let’s try out our newly unquote declared type!

red-is-a-solution : IsRed Red
red-is-a-solution = refl

green-is-not-a-solution : ¬ (IsRed Green)
green-is-not-a-solution = λ ()

red-is-only-solution : ∀ {c} → IsRed c → c ≡ Red
red-is-only-solution refl = refl

There is a major problem with using unquoteDecl outright like
this: We cannot step-wise refine our program using holes {! !} , since
that would result in unsolved meta-variables. Instead, we split this
process into two stages: A programming stage, then an unquotation
stage.

A generalised 2-stage process to unquotation

-- 〈0〉 Definition stage, we can use ‘?’ as we form this program
define-Is : Name → Name → TC >
define-Is is-name qcolour

= defineFun is-name
[ clause [ vra (var "x") ]

(def (quote _≡_)
(‘`0 :: ‘RGB :: vra (con qcolour []) :: vrv

0 [] :: []))]↪→

-- 〈1〉 Unquotation stage with a *mandatory* type declaration
IsRed' : RGB → Set
unquoteDef IsRed' = define-Is IsRed' (quote Red)

-- 〈2〉 Usage state: Trying it out
_ : IsRed' Red
_ = refl

Notice that if we use unquoteDef, we must provide a type signa-
ture. We only do so for illustration; the next code block avoids such
a redundancy by using unquoteDecl. The above general approach
lends itself nicely to the other data constructors as well:
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Unquoting multiple singleton predicate types

-- 〈0〉′ Definition stage *with* a type declaration.
declare-Is : Name → Name → TC >
declare-Is is-name qcolour =

do let η = is-name
τ ← quoteTC (RGB → Set)
declareDef (vra η) τ
define-Is is-name qcolour
defineFun is-name

[ clause [ vra (var "x") ]
(def (quote _≡_) (‘`0 :: ‘RGB :: vra (con

qcolour []) :: vrv 0 [] :: []))]↪→

-- 〈1〉′ Unquotation stage, in one line.
unquoteDecl IsBlue = declare-Is IsBlue (quote Blue)
unquoteDecl IsGreen = declare-Is IsGreen (quote Green)

{- Example use -}
disjoint-rgb : ∀{c} → ¬ (IsBlue c × IsGreen c)
disjoint-rgb (refl , ())

The next natural step is to avoid manually invoking declare-Is for
each constructor. Unfortunately, as disucussed earlier, fresh names
are not accessible, since they come into scope after typechecking.

7.1.6. Example: Avoid tedious refl proofs

We are now in a position to tackle a ‘real-world’ situation.

When functions perform a lot of pattern matching, then to prove
properties about them, it becomes necessary to pattern match on
the arguments they pattern match against —so that a particular
clause of the function applies. For instance, consider the following
two functions with overly excessive pattern matching.

Too much pattern matching...

just-Red : RGB → RGB
just-Red Red = Red
just-Red Green = Red
just-Red Blue = Red

only-Blue : RGB → RGB
only-Blue Blue = Blue
only-Blue _ = Blue

Then, to show that the above function just-Red is constantly Red
requires pattern matching then a refl for each clause. Likewise, for
just-Blue.
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3 Now, unquoteDecl f =
by-refls-on τ f (quote P) results
in the following function —where
the ci are the constructors of τ .

Elaboration of ‘by-refls-on’

η : ∀ {e : τ} → P
e↪→

η {c1} = refl
...

...
...

η {cn} = refl

...results in more pattern matching

just-Red-is-constant : ∀{c} → just-Red c ≡ Red
just-Red-is-constant {Red} = refl
just-Red-is-constant {Green} = refl
just-Red-is-constant {Blue} = refl

{- Yuck, another tedious proof -}
only-Blue-is-constant : ∀{c} → only-Blue c ≡ Blue
only-Blue-is-constant {Blue} = refl
only-Blue-is-constant {Red} = refl
only-Blue-is-constant {Green} = refl

In such cases, we can encode the general design decisions —pattern
match and yield refl— then apply the schema to each use case. Here
is the schema:3

Factoring out the insight

constructors : Definition → List Name
constructors (data-type pars cs) = cs
constructors _ = []

by-refls-on : Name → Name → Term → TC >
by-refls-on δατατγρε nom thm-you-hope-is-provable-by-refls
= let mk-cls : Name → Clause

mk-cls qcolour = clause [ hra (con qcolour []) ]
( con (quote refl) [] )

in
do let η = nom

δ ← getDefinition δατατγρε
let clauses = List.map mk-cls (constructors δ)
declareDef (vra η) thm-you-hope-is-provable-by-refls
defineFun η clauses

Here is a use case.

Factoring out the insight

obviously : Name → Term → TC >
obviously = by-refls-on (quote RGB)

_ : ∀{c} → just-Red c ≡ Red
_ = nice
where unquoteDecl nice = obviously nice (quoteTerm (∀{c} →

just-Red c ≡ Red))↪→

Where,

1. The first nice refers to the function created by the right-hand
side (RHS) of the unquote.

2. The RHS nice refers to the Name value provided by the left-
hand side (LHS).
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3. The LHS nice is a declaration of a Name value.

This is rather clunky since the theorem to be proven was repeated
twice —repetition is a signal that something’s wrong! In the next sec-
tion we use macros to avoid such repetiton, as well as the quoteTerm
keyword.

Warning! We use a where clause since unquotation cannot occur
in a let.

Here’s another use case of the proof pattern

Factoring out the insight

_ : ∀{c} → only-Blue c ≡ Blue
_ = nice

where unquoteDecl nice = obviously nice (quoteTerm ∀{c} →
only-Blue c ≡ Blue)↪→

One proof pattern, multiple invocations!

7.1.7. Macros —Abstracting Proof Patterns

Macros are functions of type τ0 → τ1 → · · · → Term → TC >
that are defined in a macro block. The last argument is supplied by
the type checker and denotes the “goal” of where the macro is placed:
One generally unifies what they have with the goal, what is desired in
the use site. In contrast to splicing terms with unquoteDecl, Agda
macros have the following benefits:

1. Metaprograms can be run in a term position.

2. Without the macro block, we run computations using the unquote
and unquoteDecl keyphrases.

3. Quotations are performed automatically; e.g., if f : Term →
Name → B → Term → TC > then an application f u v w desug-
ars into unquote (f (quoteTerm u) (quote v) w).

4. No syntactic overhead: Macros are applied like normal func-
tions.

Macros cannot be recursive; instead one defines a recursive func-
tion outside the macro block then has the macro call the recursive
function.

1. C-style macros: In the C language one defines a macro, say, by
#define luckyNum 1729 then later uses it simply by the name
luckyNum. Without macros, we have syntactic overhead using
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the unquote keyword:

Macros

luckyNum0 : Term → TC >
luckyNum0 goal = unify goal (quoteTerm 1729)

num0 : N
num0 = unquote luckyNum0

Instead, we can achieve C-style behaviour by placing our metapro-
gramming code within a macro block.

Macros

macro
luckyNum : Term → TC >
luckyNum goal = unify goal (quoteTerm 1729)

num = luckyNum

Unlike C, all code fragments must be well-defined.

2. Tedious Repetitive Proofs No More! Suppose we wish to prove
that addition, multiplication, and exponentiation have right
units 0, 1, and 1 respectively. We obtain the following nearly
identical proofs.

Macros

+-rid : ∀{n} → n + 0 ≡ n
+-rid {zero} = refl
+-rid {suc n} = cong suc +-rid

*-rid : ∀{n} → n * 1 ≡ n
*-rid {zero} = refl
*-rid {suc n} = cong suc *-rid

^-rid : ∀{n} → n ^ 1 ≡ n
^-rid {zero} = refl
^-rid {suc n} = cong suc ^-rid

There is clearly a pattern here screaming to be abstracted, let’s
comply. The natural course of action in a functional language
is to try a higher-order combinator:

Macros

{- “for loops” or “Induction for N” -}
foldn : (P : N → Set) (base : P zero) (ind : ∀ n → P n
→ P (suc n))↪→

→ ∀(n : N) → P n
foldn P base ind zero = base
foldn P base ind (suc n) = ind n (foldn P base ind n)

Now the proofs are shorter:
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Macros

_ : ∀ (x : N) → x + 0 ≡ x
_ = foldn _ refl (λ _ → cong suc) {- This and next

two are the same -}↪→

_ : ∀ (x : N) → x * 1 ≡ x
_ = foldn _ refl (λ _ → cong suc) {- Yup, same proof

as previous -}↪→

_ : ∀ (x : N) → x ^ 1 ≡ x
_ = foldn _ refl (λ _ → cong suc) {- No change, same

proof as previous -}↪→

Unfortunately, we are manually copy-pasting the same proof
pattern.

When you see repetition, copy-pasting, know that
there is room for improvement!

Don’t repeat yourself!

Repetition can be mitigated a number of ways, including type-
classes or metaprogramming, for example. The latter requires
possibly less thought and it is the topic of this article, so let’s do
that. Rather than use unquotes and their syntactic overhead,
we use macros instead. The definition below essentially pro-
duce the repeated proofs, foldn P refl (λ _ → cong suc),
at each call.

Macros

macro
_trivially-has-rid_ : (let A = N) (_⊕_ : A → A → A)

(e : A) → Term → TC >↪→

_trivially-has-rid_ _⊕_ e goal
= do τ ← quoteTC (λ(x : N) → x ⊕ e ≡ x)

unify goal (def (quote foldn) {- Using
foldn -}↪→

( vra τ {- Type
P -}↪→

:: vra (con (quote refl) []) {- Base
case -}↪→

:: vra (λv "_" 7→ quoteTerm (cong suc)) {-
Inductive step -}↪→

:: []))

Now the proofs have minimal repetition and the proof pattern
is written only once:
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Macros

_ : ∀ (x : N) → x + 0 ≡ x
_ = _+_ trivially-has-rid 0

_ : ∀ (x : N) → x * 1 ≡ x
_ = _*_ trivially-has-rid 1

_ : ∀ (x : N) → x * 1 ≡ x
_ = _^_ trivially-has-rid 1
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7.2. The Problems

Let us begin anew by briefly reviewing the main problems, but this time directly using Agda
as the language of discourse.

There are a number of problems when packaging up data, with the number of parameters
being exposed being the pivotal concern. To exemplify the distinctions at the type level as more
parameters are exposed, consider the following approaches to formalising a dynamical system
—a collection of states, a designated start state, and a transition function.

Dynamical Systems

record DynamicSystem0 : Set1 where
field
State : Set
start : State
next : State → State

record DynamicSystem1 (State : Set) : Set where
field

start : State
next : State → State

record DynamicSystem2 (State : Set) (start : State) : Set where
field

next : State → State

Each DynamicSystemi is a type constructor of i-many arguments; but it is the types of these
constructors that provide insight into the sort of data they contain as shown in the
following table and discussed in Sections 3.1.3 and 3.1.

Type Kind
DynamicSystem0 Set1
DynamicSystem1 Π X : Set • Set
DynamicSystem2 Π X : Set • Π x : X • Set

Recall, say from Section 4.1, that we refer to the concern of moving from a record to a parame-
terised record as the unbundling problem4. For example, moving from the type Set1 to the
function type Π X : Set • Set gets us from DynamicSystem0 to something resembling
DynamicSystem1, which we arrive at if we can obtain a type constructor of the form λ X :
Set • · · · . We shall refer to the latter change as reïfication since the result is more con-
crete: It can be applied. This transformation will be denoted by Π→λ. To clarify this subtlety,
consider the following forms of the type of the polymorphic identity function. Notice that idτ i

4 François Garillot et al. “Packaging Mathematical Structures”. In: Theorem Proving in Higher Order Logics.
Ed. by Tobias Nipkow and Christian Urban. Vol. 5674. LNCS. Springer, 2009. url: https://hal.inria.fr/inria-
00368403
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exposes i-many details at the type level to indicate the sort of data it consists of. However,
notice that id0 is a type of functions whereas id1 is a function on types. Indeed, the final
form is derived from the first one: idτ2 = Π→λ idτ0. This equation is true by reflexivity,
as shown below.

Polymorphic Identity Functions

idτ0 : Set1
idτ0 = Π X : Set • Π e : X • X

idτ1 : Π X : Set • Set
idτ1 = λ (X : Set) → Π e : X • X

idτ2 : Π X : Set • Π e : X • Set
idτ2 = λ (X : Set) (e : X) → X

{- Surprisingly, the latter is derivable from the former -}
_ : idτ2 ≡ Π→λ idτ0
_ = refl

{- The relationship with idτ1 is clarified later when we get to _:waist_ -}

Of course, there is also the need for descriptions of values, which leads to term datatypes. We
shall refer to the shift from record types to algebraic data types as the termtype problem.
Our aim is to obtain all of these notions —of ways to group data together— from a single
user-friendly context declaration, using monadic notation.

7.3. Monadic Notation

There is little use in an idea that is difficult to use in practice. As such, we conflate records
and termtypes by starting with an ideal syntax they would share, then derive the necessary
artefacts that permit it. As discussed at the start of the chapter, our choice of syntax is
monadic do-notation [85, 86]:

Idealised syntax for one source of truth

DynamicSystem : Context `1
DynamicSystem = do State ← Set

start ← State
next ← (State → State)
End

Here Context, End, and the underlying monadic bind operator are unknown. Since we want
to be able to expose a number of fields at will, we may take Context to be types indexed by a
number denoting exposure. Moreover, since records are product types, we expect there to be a
recursive definition whose base case will be the identity of products, the unit type 1 —which
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corresponds to > in the Agda standard library and to () in Haskell. The following table shows
example exposure ‘waists’ for the DynamicSystem context.

Elaborations of DynamicSystem at various exposure levels

Exposure Elaboration
0 Σ State : Set • Σ start : X • Σ next : State → State • 1
1 Π State : Set • Σ start : X • Σ next : State → State • 1
2 Π State : Set • Π start : X • Σ next : State → State • 1
3 Π State : Set • Π start : X • Π next : State → State • 1

With these elaborations of DynamicSystem to guide the way, we resolve two of our unknowns.

Context and End

{- “Contexts” are exposure-indexed types -}
Context = λ ` → N → Set `

{- Every type can be used as a context -}
‘_ : ∀ {`} → Set ` → Context `
‘ S = λ _ → S

{- The “empty context” is the unit type -}
End : ∀ {`} → Context `
End {`} = ‘ 1 {`}

It remains to identify the definition of the underlying bind operation >>=. Usually, for a type
constructor m, bind is typed ∀ {A B : Set} → m A → (A → m B) → m B. It allows one to
“extract an A-value for later use” in the m B context. Since our m = Context is from levels to
types, we need to slightly alter bind’s typing.

Defining Bind —First Attempt

-- >>= : ∀ {A B : Set} → m A → (A → m B) → m B
_>>=_ : ∀ {a b : Level} → (Γ : Context a) → (∀ {n} → Γ n → Context b) → Context (a
] b)↪→

(Γ >>= f) zero = Σ γ : Γ 0 • f γ 0
(Γ >>= f) (suc n) = Π γ : Γ n • f γ n

The definition here accounts for the current exposure index: If zero, we have record types,
otherwise function types. Using this definition, the above dynamical system context would need
to be expressed using the lifting quote operation.

The extensibility of Context is provided by the definition of bind: Rather than
Σ and Π, users may use or augment the framework in other forms —e.g., Πw,
W, or let· · · in· · · (as shown in N 1’ below) or *combinations thereof.
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Example Use

‘ Set >>= λ State
→ ‘ State >>= λ start

→ ‘ (State → State) >>= λ next
→ End

{- or -}

do State ← ‘ Set
start ← ‘ State
next ← ‘ (State → State)
End

Interestingly5,6, use of do-notation in preference to bind, >>=, was suggested by John Launch-
bury in 1993 and was first implemented by Mark Jones in Gofer. Anyhow, with our goal of
practicality in mind, we shall “build the lifting quote into the definition” of bind:

The Definition of Bind

_>>=_ : ∀ {a b}
→ (Γ : Set a) -- Main difference
→ (Γ → Context b)
→ Context (a ] b)

(Γ >>= f) zero = Σ γ : Γ • f γ 0
(Γ >>= f) (suc n) = Π γ : Γ • f γ n

With this definition, the above declaration DynamicSystem typechecks. However, we do not
have an isomorphism DynamicSystem i ∼= DynamicSystemi, instead DynamicSystem i are “fac-
tories”: Given i-many arguments, a product value is formed. What if we want to instantiate
some of the factory arguments ahead of time?

Factories and Instantiation —Natural numbers form a dynamic system

N 0 : DynamicSystem 0 {- See the above elaborations -}
N 0 = N , 0 , suc , tt

-- N 1 : DynamicSystem 1
-- N 1 = λ State → ??? {- Impossible to complete if “State” is empty! -}

{- ‘Instantiaing’ State to be N in “DynamicSystem 1” -}

N 1
′ : let State = N in Σ start : State • Σ s : (State → State) • 1 {`0}

N 1
′ = 0 , suc , tt

5 Richard Bird. “Thinking Functionally with Haskell”. In: (2009). doi: 10.1017/cbo9781316092415
6 Paul Hudak et al. “A history of Haskell: being lazy with class”. In: Proceedings of the Third ACM SIGPLAN
History of Programming Languages Conference (HOPL-III), San Diego, California, USA, 9-10 June 2007.
Ed. by Barbara G. Ryder and Brent Hailpern. ACM, 2007, pp. 1–55. doi: 10.1145/1238844.1238856. url:
http://dl.acm.org/citation.cfm?id=1238844
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To get from N 1 to N 1
′, it seems what we need is a method, say Π→λ, that takes a Π-type and

transforms it into a λ-expression. One could use a universe, an algebraic type of codes denoting
types, to define Π→λ. However, one can no longer then easily use existing types since they are
not formed from the universe’s constructors, thereby resulting in duplication of existing types
via the universe encoding. This is neither practical nor pragmatic. As such, we are left with
pattern matching on the language’s type formation primitives as the only reasonable approach.
The method Π→λ is thus a macro7 that acts on the syntactic term representations of types.
Below is the main transformation.

Π→λ

Π→λ (Π a : A • τ) = (λ a : A • Π→λ τ)

Source

Π→λ-type : Term → Term
Π→λ-type (pi a (abs x b)) = pi a (abs x (Π→λ-type b))
Π→λ-type x = unknown

Π→λ-helper : Term → Term
Π→λ-helper (pi a (abs x b)) = lam visible (abs x (Π→λ-helper b))
Π→λ-helper x = x

macro
Π→λ : Term → Term → TC Unit.>
Π→λ tm goal = normalise tm

>>=term λ tm' → checkType goal (Π→λ-type tm')
>>=term λ _ → unify goal (Π→λ-helper tm')

Thanks to Ulf Norell for helping update this function to the most recent version of Agda
(2.6.1.2).

That is, we walk along the term tree replacing (consecutive) occurrences of Π with λ; as shown
in the following formal (i.e., typechecked) calculation.

7 A macro is a function that manipulates the abstract syntax trees of the host language. In particular, it may
take an arbitrary term, shuffle its syntax to provide possibly meaningless terms or terms that could not be
formed without pattern matching on the possible syntactic constructions.
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Example use of Π→λ

_ = Π→λ (DynamicSystem 2)
≡〈 "Definition of DynamicSystem at exposure level 2" 〉'

Π→λ (Π X : Set • Π s : X • Σ n : (X → X) • 1 {`0})
≡〈 "Definition of Π→λ; replace a ‘Π’ by a ‘λ’" 〉'

(λ (X : Set) → Π→λ (Π s : X • Σ n : (X → X) • 1 {`0}))
≡〈 "Definition of Π→λ; replace a ‘Π’ by a ‘λ’" 〉'

(λ (X : Set) → λ (s : X) → Π→λ (Σ n : (X → X) • 1 {`0}))
≡〈 "Next symbol is not a ‘Π’, so Π→λ stops" 〉'
λ (X : Set) → λ (s : X) → Σ n : (X → X) • 1 {`0}

For pragmatism, we define a macro _:waist_ such that ρ :waist n ≡ Π→λ (ρ n). Were
we to attempt to prove such an equation in Agda, supposing, say, ρ : N → Set and n : N, by
definition chasing (i.e., normalisation) the left side would immediatly reduce to ρ whereas the
right side would reduce to ρ n; resulting in two distinct expressions. However, by inspecting the
definitions, the only difference between the two is in the first line: Π→λ takes an instantiated
context, whereas _:waist_ takes a context and a ‘waist integer’ to instantiate the given context.

Waist

ρ :waist n = Π→λ (ρ n)

Source

{- ρ :waist n ≡ Π→λ (ρ n) -}
macro
_:waist_ : (pkg : Term) (height : Term) (goal : Term) → TC Unit.>
_:waist_ pkg n goal = normalise (pkg app n)

>>=term λ ρ → checkType goal (Π→λ-type ρ)
>>=term λ _ → unify goal (Π→λ-helper ρ)

We can now “fix arguments ahead of time”. Before such demonstration, we need to be mindful
of our practicality goals: One declares a grouping mechanism with do . . . End, which in turn
has its instance values constructed with 〈 . . . 〉, as defined below.
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Syntactic Sugar for Context Values

-- Expressions of the form “· · · , tt” may now be written “〈 · · · 〉”
infixr 5 〈 _〉
〈〉 : ∀ {`} → 1 {`}
〈〉 = tt

〈 : ∀ {`} {S : Set `} → S → S
〈 s = s

_〉 : ∀ {`} {S : Set `} → S → S × (1 {`})
s 〉 = s , tt

The following instances of grouping types demonstrate how information moves from the body
level to the parameter level.

Unbundling: Lifting Fields into Parameters

N 0 : DynamicSystem :waist 0
N 0 = 〈 N , 0 , suc 〉

N 1 : (DynamicSystem :waist 1) N
N 1 = 〈 0 , suc 〉

N 2 : (DynamicSystem :waist 2) N 0
N 2 = 〈 suc 〉

N 3 : (DynamicSystem :waist 3) N 0 suc
N 3 = 〈〉

Using :waist i we may fix the first i-parameters ahead of time. Indeed, the type
(DynamicSystem :waist 1) N is the type of dynamic systems over carrier N, whereas
(DynamicSystem :waist 2) N 0 is the type of dynamic systems over carrier N and start state
0.

Examples of the need for such on-the-fly unbundling can be found in numerous places in the
Haskell standard library. For instance, the standard libraries8 have two isomorphic copies of the
integers, called Sum and Product, whose reason for being is to distinguish two common monoids:
The former is for integers with addition whereas the latter is for integers with multiplication.
An orthogonal solution would be to use contexts:

8 Haskell Basic Libraries — Data.Monoid. 2020. url: http://hackage.haskell.org/package/base-4.12.0.0/
docs/Data-Monoid.html (visited on 03/03/2020)
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Monoids without commitment

Monoid : ∀ ` → Context (`suc `)
Monoid ` = do Carrier ← Set `

_⊕_ ← (Carrier → Carrier → Carrier)
Id ← Carrier
leftId ← ∀ {x : Carrier} → x ⊕ Id ≡ x
rightId ← ∀ {x : Carrier} → Id ⊕ x ≡ x
assoc ← ∀ {x y z} → (x ⊕ y) ⊕ z ≡ x ⊕ (y ⊕ z)
End {`}

With this context, (Monoid `0 :waist 2) M _⊕_ is the type of monoids over particular types
M and particular operations _⊕_. Of course, this is orthogonal, since traditionally unification
on the carrier type M is what makes typeclasses and canonical structures9 useful for ad-hoc
polymorphism.

7.4. Termtypes as Fixed-points

We have a practical monadic syntax for possibly parameterised record types that we would like
to extend to termtypes. As discussed in the previous section, we could alter the bind operator
to account for W-types, but we shall present a different technique so as to avoid “making bind
do too much”. Algebraic data types are a means to declare concrete representations of the least
fixed-point of a functor; see Swierstra10 for more on this idea. In particular, the description
language D for dynamical systems, below, declares concrete constructors for a fixpoint of a
certain functor D; i.e., D ∼= Fix D where:

ADTs and Functors

data D : Set where
startD : D
nextD : D → D

D : Set → Set
D = λ (D : Set) → 1 ] D

data Fix (F : Set → Set) : Set where
µ : F (Fix F) → Fix F

The problem is whether we can derive D from DynamicSystem. Let us attempt a quick calcu-
lation sketching the necessary transformation steps (informally expressed via “ ”):

9 Assia Mahboubi and Enrico Tassi. “Canonical Structures for the working Coq user”. In: ITP 2013, 4th
Conference on Interactive Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin, and David Pichardie.
Vol. 7998. LNCS. Rennes, France: Springer, July 2013, pp. 19–34. doi: 10.1007/978-3-642-39634-2_5

10 Wouter Swierstra. “Data types à la carte”. In: J. Funct. Program. 18.4 (2008), pp. 423–436. doi: 10.1017/
S0956796808006758
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From Contexts to Fixed-points: A Roadmap

do S ← Set; s ← S; n ← (S → S); End
 {- Use existing interpretation to obtain a record. -}

Σ S : Set • Σ s : S • Σ n : (S → S) • 1
 {- Pull out the carrier using “:waist 1”,

then obtain a type constructor using “Π→λ”. -}
λ S : Set • Σ s : S • Σ n : (S → S) • 1

 {- Termtype constructors target the declared type,
so only their sources matter. E.g., ‘s : S’ is a
nullary constructor targeting the carrier ‘S’.
As a design decision, this introduces 1 types, so any existing
occurrences are dropped via 0. -}

λ S : Set • Σ s : 1 • Σ n : S • 0
 {- Termtypes are sums of products. -}
λ S : Set • 1 ] S ] 0

 {- Termtypes are fixpoints of type constructors. -}
Fix (λ S • 1 ] S) -- i.e., Fix D; i.e., D; i.e., N

Since we may view an algebraic data-type as a fixed-point of the functor obtained from the union
of the sources of its constructors, it suffices to treat the fields of a record as constructors, then
obtain their sources, then union them. That is, since algebraic-datatype constructors necessarily
target the declared type, they are determined by their sources. For example, considered as a
unary constructor op : A → B targets the termtype B and so its source is A. Hence, we can
form the termtype of a context as the Fix-point of the sum —using Σ→]— of the sources of
the context, as shown below. Where the operation Σ→] rewrites dependent-sums into disjoint
sums, which requires the second argument to lose its reference to the first argument which is
accomplished by ↓↓; further details can be found in the following subsections.

sources (λ x : (Π a : A • Ba) • τ) = (λ x : A • sources τ)
sources (λ x : A • τ) = (λ x : 1 • sources τ)

↓↓ τ = “reduce all de-bruijn indices within τ by 1”

Σ→] (Σ a : A • Ba) = A ] Σ→] (↓↓ Ba)

termtype τ = Fix (Σ→] (sources τ))

Before moving to an instructive use of this combinator, let us touch a bit on the details of its
formation.

7.4.1. The termtype combinator

Using the guiding calculation above, we shall work up to the desired functor D by implementing
each stage i of the calculation and showing the approximation Di of the functor D at that stage.

1. Stage 1: Records. The first step is already possible, using the existing Context setup.
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Building up to the termtype combinator

D1 = DynamicSystem 0

1-records : D1 ≡ (Σ X : Set • Σ z : X • Σ s : (X → X) • 1 {`0})
1-records = refl

2. Stage 2: Parameterised Records. The second step is also already implemented, using the
existing _:waist_ mechanism.

Building up to the termtype combinator

D2 = DynamicSystem :waist 1

2-funcs : D2 ≡ (λ (X : Set) → Σ z : X • Σ s : (X → X) • 1 {`0})
2-funcs = refl

3. Stage 3: Sources.

As per the informal description of sources in the guiding calculation, we reinforce the
idea with a number of desired test cases —as usual, formal machine checked test cases
and Agda code can be found on the thesis repository. In particular, we make a design
decision for the resulting termtype combinator: Types starting with implicit arguments
are invariants, not constructors —and so are dropped from the resulting ADT by replacing
them with the empty type ‘0’.

Example uses of sources

τ sources τ

Src → Tgt Src
Σ f : (Src → Tgt) • Bdy Σ x : Src • Bdy
τ1 → · · · → τn τ1 × · · · × τn−1 × 1
Σ f : τ1 → · · · → τn • Bdy Σ f : (τ1 × · · · × τn−1) • Bdy
∀ {x : N} → x ≡ x 0
(∀ {x y z : N} → x ≡ y) 0
1 0

The third stage can now be formed.

Building up to the termtype combinator

D3 = sources D2

3-sources : D3 ≡ λ (X : Set) → Σ z : 1 • Σ s : X • 0
3-sources = refl
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With the following definitions.

sourcest (Π a : A • Ba) = A
sources (B x : (Π a : A • Ba) • τ) = (B x : A • sources τ)
sources (B x : A • τ) = (B x : 1 • sources τ)
Where B is one of the binders λ or Σ.

Building up to the termtype combinator

-- The source of a type, not an arbitrary term.
-- E.g., sources (Σ x : τ • body) = Σ x : sourcest τ • sources body
sourcest : Term → Term

{- “Π {a : A} • Ba” 7→ 0 -}
sourcest (pi (arg (arg-info hidden _) A) _) = quoteTerm 0

{- “Π a : A • Π b : Ba • C a b” 7→ “Σ a : A • Σ b : B a • sourcest (C a b)”
-}↪→

sourcest (pi (arg a A) (abs “a” (pi (arg b Ba) (abs “b” Cab)))) =
def (quote Σ) (vArg A

:: vArg (lam visible (abs “a”
(def (quote Σ)

(vArg Ba
:: vArg (lam visible (abs “b” (sourcest Cab)))
:: []))))

:: [])

{- “Π a : A • Ba” 7→ “A” provided Ba does not begin with a Π -}
sourcest (pi (arg a A) (abs “a” Ba)) = A

{- All other non function types have an empty source; since X ∼= (1 → X) -}
sourcest _ = quoteTerm (1 {`0})
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Building up to the termtype combinator

{-# TERMINATING #-} -- Termination via structural smaller arguments is not clear
due to the call to List.map↪→

sourcesterm : Term → Term

sourcesterm (pi a b) = sourcest (pi a b)
{- “Σ x : τ • Bx” 7→ “Σ x : sourcest τ • sources Bx” -}
sourcesterm (def (quote Σ) (`1 :: `2 :: τ :: body))

= def (quote Σ) (`1 :: `2 :: map-Arg sourcest τ :: List.map (map-Arg sourcesterm)
body)↪→

{- This function introduces 1s, so let's drop any old occurances a la 0. -}
sourcesterm (def (quote 1) _) = def (quote 0) []

-- TODO: Maybe we do not need these cases.
sourcesterm (lam v (abs s x)) = lam v (abs s (sourcesterm x))
sourcesterm (var x args) = var x (List.map (map-Arg sourcesterm) args)
sourcesterm (con c args) = con c (List.map (map-Arg sourcesterm) args)
sourcesterm (def f args) = def f (List.map (map-Arg sourcesterm) args)
sourcesterm (pat-lam cs args) = pat-lam cs (List.map (map-Arg sourcesterm) args)

-- sort, lit, meta, unknown
sourcesterm t = t

Building up to the termtype combinator

macro
sources : Term → Term → TC Unit.>
sources tm goal = normalise tm >>=term λ tm' → unify (sourcesterm tm') goal

Put simply, an ADT is generated by the following abstract grammar.

T ::= 0 (the empty type)
| (c : τ) + T (adding a new constructor consuming arguments of type τ)

Such terms 0 + (c1 : τ1) + · · ·+ (cn : τn) are essentially the result of sources.

4. Stage 4: Σ→] –Replacing Products with Sums.

As another tersely introduced utility, let us flesh-out Σ→] by means of a few desired
unit tests —notice that the final example concerns a parameterised dynamical system. As
mentioned in the guiding calculation, we will replace unit types by empty types —i.e.,
“empty Σ-products by empty ]-sums”.
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τ Σ→] τ

Π S : Set • (S → S) Π S : Set • (S → S)

Π S : Set • Σ n : S • S Π S : Set • S ] S)

Π S : Set • Σ n : (S → S) • S Π S : Set • (S → S) ] S)

λ S : Set • Σ s : S • Σ n : (S → S) • 1 λ S : Set • S ] (S → S) ] 0

Decreasing de Brujin Indices: Any given quantification (Σ x : τ • fx) may have
its body fx refer to the free variable x. If we decrement all de Bruijn indices fx contains,
then there would be no reference to x. ( In the code below, ↓↓ appears as var-dec. )
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↓↓

Building up to the termtype combinator

arg-term : ∀ {`} {A : Set `} → (Term → A) → Arg Term → A
arg-term f (arg i x) = f x

Building up to the termtype combinator

{-# TERMINATING #-}
lengtht : Term → N
lengtht (var x args) = 1 + sum (List.map (arg-term lengtht ) args)
lengtht (con c args) = 1 + sum (List.map (arg-term lengtht ) args)
lengtht (def f args) = 1 + sum (List.map (arg-term lengtht ) args)
lengtht (lam v (abs s x)) = 1 + lengtht x
lengtht (pat-lam cs args) = 1 + sum (List.map (arg-term lengtht ) args)
lengtht (pi X (abs b Bx)) = 1 + lengtht Bx
{-# CATCHALL #-}
-- sort, lit, meta, unknown
lengtht t = 0
-- The Length of a Term:1 ends here

-- [[The Length of a Term][The Length of a Term:2]]
_ : lengtht (quoteTerm (Σ x : N • x ≡ x)) ≡ 10
_ = refl

Building up to the termtype combinator

var-dec0 : (fuel : N) → Term → Term
var-dec0 zero t = t
-- Let's use an “impossible” term.
var-dec0 (suc n) (var zero args) = def (quote 0) []
var-dec0 (suc n) (var (suc x) args) = var x args
var-dec0 (suc n) (con c args) = con c (map-Args (var-dec0 n) args)
var-dec0 (suc n) (def f args) = def f (map-Args (var-dec0 n) args)
var-dec0 (suc n) (lam v (abs s x)) = lam v (abs s (var-dec0 n x))
var-dec0 (suc n) (pat-lam cs args) = pat-lam cs (map-Args (var-dec0 n)

args)↪→

var-dec0 (suc n) (pi (arg a A) (abs b Ba)) = pi (arg a (var-dec0 n A)) (abs
b (var-dec0 n Ba))↪→

-- var-dec0 (suc n) (Π[ s : arg i A ] B) = Π[ s : arg i (var-dec0 n A) ]
var-dec0 n B↪→

{-# CATCHALL #-}
-- sort, lit, meta, unknown
var-dec0 n t = t

Building up to the termtype combinator

var-dec : Term → Term
var-dec t = var-dec0 (lengtht t) t
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Notice that we made the decision that x, in the body of (Σ x • x), will reduce to 0,
the empty type. Indeed, in such a situation the only DeBrujin index cannot be reduced
further; e.g., ↓↓(quoteTerm x) ≡ quoteTerm ⊥.

Σ→]

var-dec τ = “reduce all de-bruijn indices within τ by
1”
Σ→] (Σ a : A • Ba) = A ] Σ→] (var-dec Ba)
Σ→] (B a : A • Ba) = (B a : A • Σ→] Ba) for other
binders B, such as Π or λ.

Building up to the termtype combinator

{-# TERMINATING #-}
Σ→]0 : Term → Term

{- “Σ a : A • Ba” 7→ “A ] B” where ‘B’ is ‘Ba’ with no reference to ‘a’
-}↪→

Σ→]0 (def (quote Σ) (h1 :: h0 :: arg i A :: arg i1 (lam v (abs s x)) :: []))
= def (quote _]_) (h1 :: h0 :: arg i A :: vArg (Σ→]0 (var-dec x)) :: [])

-- Interpret “End” in do-notation to be an empty, impossible, constructor.
-- See the unit tests above ;-)
-- For some reason, the inclusion of this caluse obscures structural

termination.↪→

Σ→]0 (def (quote 1) _) = def (quote 0) []

-- Walk under λ's and Π's.
Σ→]0 (lam v (abs s x)) = lam v (abs s (Σ→]0 x))
Σ→]0 (pi A (abs a Ba)) = pi A (abs a (Σ→]0 Ba))
Σ→]0 t = t

macro
Σ→] : Term → Term → TC Unit.>
Σ→] tm goal = normalise tm >>=term λ tm' → unify (Σ→]0 tm') goal

We can now form the fourth stage approximation of the functor D; in-fact we will use
this form as the definition of the desired functor D —since the sum with 0 essentially
contributes nothing.

Building up to the termtype combinator

D4 = Σ→] D3

4-unions : D4 ≡ λ X → 1 ] X ] 0
4-unions = refl

CHAPTER 7. THE CONTEXT LIBRARY



7.4. TERMTYPES AS FIXED-POINTS 172

5. Stage 5: Fixpoint. Since we want to define algebraic data-types as fixed-points, we are
led inexorably to using a recursive type that fails to be positive.

Building up to the termtype combinator

{-# NO_POSITIVITY_CHECK #-}
data Fix {`} (F : Set ` → Set `) : Set ` where
µ : F (Fix F) → Fix F

Building up to the termtype combinator

D = Fix D4

We summarise the stages together into one macro:

Termtype

termtype : UnaryFunctor → Type
termtype τ = Fix (Σ→] (sources τ))

Building up to the termtype combinator

macro
termtype : Term → Term → TC Unit.>
termtype tm goal =

normalise tm
>>=term λ tm' → unify goal (def (quote Fix) ((vArg (Σ→]0

(sourcesterm tm'))) :: []))↪→

Then, we may instead declare:

Building up to the termtype combinator

D = termtype (DynamicSystem :waist 1)

7.4.2. Instructive Example: D ∼= N

It is instructive to work through the process of how D is obtained from termtype in order to
demonstrate that this approach to algebraic data types is practical within Agda.
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Declaring a Derived Termtype

D = termtype (DynamicSystem :waist 1)

-- Pattern synonyms for more compact presentation
pattern startD = µ (inj1 tt) -- : D
pattern nextD e = µ (inj2 (inj1 e)) -- : D → D

With these pattern declarations, we can actually use the more meaningful names startD and
nextD when pattern matching, instead of the seemingly daunting µ-inj-ections. For instance,
we can immediately see that the natural numbers act as the description language for dynamical
systems:

Seemingly Trivial Remappings

to : D → N
to startD = 0
to (nextD x) = suc (to x)

from : N → D
from zero = startD
from (suc n) = nextD (from n)

Readers whose language does not have pattern clauses need not despair. With the following
macro

Inj n x = µ (inj2 n (inj1 x))

Seemingly Trivial Remappings

-- i-th injection: (inj2 ◦ · · · ◦ inj2) ◦ inj1
Inj0 : N → Term → Term
Inj0 zero c = con (quote inj1) (arg (arg-info visible relevant) c :: [])
Inj0 (suc n) c = con (quote inj2) (vArg (Inj0 n c) :: [])

macro
Inj : N → Term → Term → TC Unit.>
Inj n t goal = unify goal ((con (quote µ) []) app (Inj0 n t))

we may define startD = Inj 0 tt and nextD e = Inj 1 e — that is, constructors of
termtypes are particular injections into the possible summands that the termtype consists of.
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7.5. Free Datatypes from Theories

Astonishingly, useful programming datatypes arise from termtypes of theories (contexts). That
is, if a parameterised context C : Set → Context `0 is given, then
C = λ X → termtype (C X :waist 1) can be used to form ‘free, lawless, C-instances’. For
instance, earlier we witnessed that the termtype of dynamical systems is essentially the natural
numbers.

Data structures as free theories

Theory Termtype
Dynamical Systems N
Pointed Structures Maybe
Actions Streams
Monoids Binary Trees

The final entry in the above table is a well known correspondence that we can now not only
formally express, but also prove to be true. As we did with dynamical systems, we begin with
forming M the termtype of monoids, then using pattern clauses to provide compact names, and
explicitly form the algebraic data type of trees.

Trees from Monoids

M : Set
M = termtype (Monoid `0 :waist 1)

that-is : M ≡ Fix (λ X → X × X × 1 -- _⊕_, branch
] 1 -- Id, nil leaf
] 0 -- invariant leftId
] 0 -- invariant rightId
] 0 -- invariant assoc
] 0) -- the “End {`}”

that-is = refl

-- Pattern synonyms for more compact presentation
pattern emptyM = µ (inj2 (inj1 tt)) -- : M
pattern branchM l r = µ (inj1 (l , r , tt)) -- : M → M → M
pattern absurdM a = µ (inj2 (inj2 (inj2 (inj2 a)))) -- absurd 0-values

data TreeSkeleton : Set where
empty : TreeSkeleton
branch : TreeSkeleton → TreeSkeleton → TreeSkeleton

Using Agda’s Emacs interface, we may interactively case-split on values of M until the declared
patterns appear, then we associate them with the constructors of TreeSkeleton.
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Seemingly Trivial Remappings

to : M → TreeSkeleton
to emptyM = empty
to (branchM l r) = branch (to l) (to r)
to (absurdM (inj1 ()))
to (absurdM (inj2 ()))

from : TreeSkeleton → M
from empty = emptyM
from (branch l r) = branchM (from l) (from r)

That these two operations are inverses is easily demonstrated.

Trees from Monoids

from◦to : ∀ m → from (to m) ≡ m
from◦to emptyM = refl
from◦to (branchM l r) = cong2 branchM (from◦to l) (from◦to r)
from◦to (absurdM (inj1 ()))
from◦to (absurdM (inj2 ()))

to◦from : ∀ t → to (from t) ≡ t
to◦from empty = refl
to◦from (branch l r) = cong2 branch (to◦from l) (to◦from r)

Without the pattern declarations the result would remain true, but it would be quite difficult
to believe in the correspondence without a machine-checked proof.

To obtain a data structure over some ‘value type’ Ξ, one must start with “theories containing
a given set Ξ”. For example, we could begin with the theory of abstract collections, then obtain
lists as the associated termtype.

Lists from Paramterised Collections

Collection : ∀ ` → Context (`suc `)
Collection ` = do Elem ← Set `

Carrier ← Set `
insert ← (Elem → Carrier → Carrier)
∅ ← Carrier
End {`}

C : Set → Set
C Elem = termtype ((Collection `0 :waist 2) Elem)

pattern _::_ x xs = µ (inj1 (x , xs , tt))
pattern ∅ = µ (inj2 (inj1 tt))
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Realising Collection ASTs as Lists

to : ∀ {E} → C E → List E
to (e :: es) = e :: to es
to ∅ = []

It is then little trouble to show that to is invertible. We invite the readers to join in on the
fun and try it out themselves. Finally, indexed unary algebras give rise to streams as follows.

Actions ↔ Streams

-- 0: The useful structure
Action : Context `1
Action = do Value ← Set

Program ← Set
run ← (Program → Value → Value)
End {`0}

-- 1: Its termtype and syntactic sugar
Action : Set → Set
Action X = termtype ((Action :waist 2) X)

pattern _·_ head tail = µ (inj1 (tail , head , tt))

-- 2: Notice that it's just streams
record Stream (X : Set) : Set where
coinductive {- Streams are characterised extensionally -}
field

hd : X
tl : Stream X

open Stream

-- Here's one direction
view : ∀ {I} → Action I → Stream I
hd (view (t · h)) = t
tl (view (t · h)) = view h

7.6. Language Agnostic Construction

In contrast to the generic approach to semantics for contexts of section 5.4, here we generalise
the previous setup to an arbitrary Generalised Type Theory —as defined in Chapter 2, and
used to place the prototype on solid foundations. We present a quick sketch —and so omit the
full typing rules of the claimed operators, leaving that as an exercise for the interested reader
(some of which are already present in Chapter 2; consult Lee et all11 for a mechansisation of
the metatheory of modules).
11 Daniel K. Lee, Karl Crary, and Robert Harper. “Towards a mechanized metatheory of standard ML”. in:

Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
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Suppose we have a language consisting of ‘terms’ and a typing relation ‘`’. To implement
the Context library for such a language, we need to have access to 3 classes of constructions:

1. Dependent function types Π a : A • Ba with values λ a : A • ba and the usual func-
tion application eliminator —where A : Type and a : A ` Ba : Type and a : A ` ba :
Ba— and there is a unit and type ` 1 : Type and the natural numbers ` N : Type.

2. Dependent record types Σ a : A • Ba —where A : Type and a : A ` Ba : Type— and
there is an empty type and ` 0 : Type.

3. An operator Fix that maps polynomial functors to their initial algebras —notice that it
does not need to be a generic fixpoint operator.

We have 3 classes corresponding to the 3 primitive ways to view a context —Π, Σ, and W
as discussed in Chapter 5. The more of these features that a language has, the more of the
Context system it can implement.

Π; λ; N; 1 ⇒ Context

-- ` Context : Type
Context = Π _ : N • Type

-- ` End : Context
End = λ _ : N • 1

Σ ⇒ 〉〉=

-- ` _〉〉=_ : Π Γ : Type • Π _ : (Π _ : Γ • Context) • Context
(Γ 〉〉= f) 0 = Σ γ : Γ • f γ 0
(Γ 〉〉= f) (n + 1) = Π γ : Γ • f γ n

0 ⇒ Typeclasses with Π→λ

-- ` Π→λ : Π A : Type • Π _ : Type • Π _ : A • Type
Π→λ A (Π a : A • τ) = λ a : A • Π→λ τ
Π→λ A _ = λ a : A • 0

-- ` :waist : Π A : Type • Π _ : Context • Π _ : N • Π _ : A • Type
:waist A ρ n = Π→λ (ρ n)

The final piece, regarding termtypes, requires a mechanism provided for forming guarded
definitions —in Agda this is accomplished with the with keyword.

POPL 2007, Nice, France, January 17-19, 2007. 2007, pp. 173–184. doi: 10.1145/1190216.1190245
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Fixpoints ⇒ W-types

-- ` sources : Π _ : (Π _ : Type • Type) • Π _ : Type • Type
sources (λ x : (Π a : A • Ba) • τ) = λ x : A • sources τ
sources (λ x : A • τ) = λ x : 1 • sources τ
sources _ = λ x : 0 • 0

-- ` Σ→] : Π _ : Type • Type
Σ→] (Σ a : A • B) = A ] Σ→] B provided ` B : Type
Σ→] _ = 0

-- ` termtype : Π τ : (Π _ : Type • Type) • Type
termtype τ = Fix (Σ→] (sources τ))

Since 〉〉= ensures that Context values are always formed from sums Σ and products Π, we
have polynomial constructions and so it suffices to find the initial algebra of such operators
—which always exist; see Section 5.3 on W-types. We assumed Fix yields such algebras.

7.7. Conclusion

Starting from the insight that related grouping mechanisms could be unified, we showed how
related structures can be obtained from a single declaration using a practical inter-
face. The resulting framework, based on contexts, still captures the familiar record declaration
syntax as well as the expressivity of usual algebraic datatype declarations —at the minimal
cost of using pattern declarations to aide as user-chosen constructor names. We believe that
our approach to using contexts as general grouping mechanisms with a practical interface are
interesting contributions.

We used the focus on practicality to guide the design of our context interface, and provided
interpretations both for the rather intuitive “contexts are name-type records” view, and for
the novel “contexts are fixed-points” view for termtypes. In addition, to obtain parameterised
variants, we needed to explicitly form “contexts whose contents are over a given ambient context”
—e.g., contexts of vector spaces are usually discussed with the understanding that there is a
context of fields that can be referenced— which we did using the name binding machanism of
do-notation. These relationships are summarised in the following table.
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Contexts embody all kinds of grouping mechanisms

Concept Concrete Syntax Description
Context do S ← Set; s ← S; n ← (S → S); End “name-type pairs”
Record Type Σ S : Set • Σ s : S • Σ n : S → S • 1 “bundled-up data”
Function Type Π S • Σ s : S • Σ n : S → S • 1 “a type of functions”
Type constructor λ S • Σ s : S • Σ n : S → S • 1 “a function on types”
Algebraic datatype data D : Set where s : D; n : D → D “a descriptive syntax”

To those interested in exotic ways to group data together —such as, mechanically deriving
product types and homomorphism types of theories— we offer an interface that is extensible
using Agda’s reflection mechanism. In comparison with, for example, special-purpose prepro-
cessing tools, this has obvious advantages in accessibility and semantics.

To Agda programmers, this offers a standard interface for grouping mechanisms that had
been sorely missing, with an interface that is so familiar that there would be little barrier to
its use. In particular, as we have shown, it acts as an in-language library for exploiting
relationships between free theories and data structures. As we have presented the
high-level definitions of the core combinators —alongside Agda-specific details which may be
safely ignored— it is also straightforward to translate the library into other dependently-typed
languages (where appropriate reflection features are available).
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8. Conclusion

The initial goal of this work was to explore how investigations into packaging-up-data —and
language extension in general— could benefit from mechanising tedious patterns, thereby rein-
vigorating the position of universal algebra within computing. Towards that goal, we have
decided to create an editor extension that can be used, for instance, to quickly introduce uni-
versal algebra constructions for the purposes of “getting things done” in a way that does not
force users of an interface to depend on features they do not care about —the so-called Interface
Segregation Principle. Moreover, we have repositioned the prototype from being an auxiliary
editor extension to instead being an in-language library and have presented its key insights so
that it can be implemented in other dependently-typed settings besides Agda.

Based on the results —such as the over 80% line savings in the MathScheme library— we
are convinced that the (one-line) specification of common theories (data-structures) can indeed
be used to reinvigorate the position of universal algebra in computing, as far as DTLs are
concerned. The focus on the modular nature of algebraic structures, for example, allows for
the mechanical construction of novel and unexpected structures in a practical and elegant way
—for instance, using the keeping combinator to extract the minimal interface for an operation,
or proof, to be valid. Also, we believe that the correspondence between abstract mathematical
theories and data structures in computing only strengthens the need for a mechanised approach
for the under-utilised constructions available on the mathematical side of the correspondence.

Some preliminary experiences show that the approach used in this thesis can be used with
immediate success. For example, the editor extension allows a host of renamings to be done,
along with the relevant relationship mappings, and so allow proofs to be written in a more
readable fashion. As another example, the in-language library allows one to show that the free
algebra associated with a theory is a particular useful and practical data-structure —such as
N, Maybe, and List. These two examples are more than encouraging, for the continual of this
effort. Also, the success claimed by related work like Arend1,2 makes us believe that we can
have a positive impact.

This thesis has focused on various aspects of furnishing packages with a status resembling
that of a first-class citizen in a dependently-typed language. Where possible, we will give an
indication of future work which has still to be done to get more insight in this direction.

1 JetBrains Research. Arend Theorem Prover. 2020. url: https://arend-lang.github.io/
2 Valery Isaev. “Models of Homotopy Type Theory with an Interval Type”. In: CoRR abs/2004.14195 (2020).
arXiv: 2004.14195. url: https://arxiv.org/abs/2004.14195
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8.1. Questions, Old and New

Herein we revisit the research questions posed in the introductory chapter, summarise our
solutions to each, and discuss future work.

Practical Concern ]1: Renaming & Remembering Relationships. A given struc-
ture may naturally give rise to various ‘children structures’, such as by adding-new/dropping-
old/renaming components, and it is useful to have a (possibly non-symmetric) coercion between
the child and the original parent.

We have succeeded to demonstrate that ubiquitous constructions can be mechanised and the
coercions can also be requested by a simple keyword in the specification of the child structure.
As far as this particular problem is concerned, we see no missing feature and are content with
the success that the PackageFormer prototype has achieved. However, the in-language Context
library does leave room for improvement, but this is a limitation of the current Agda reflection
mechanism rather than of the approach outlined by PackageFormer.

Practical Concern ]2: Unbundling. A given structure may need to have some of its
components ‘fixed ahead of time’. For instance, if we have a type Graph of graphs but we
happen to be discussing only graphs with natural numbers as nodes, then we need to work with
Σ G : Graph • G.Node ≡ N and so work with pairs (G, refl) whose second component is
a necessarily technical burden, but is otherwise uninsightful.

Our frameworks fully achieve this goal. An improvement would be not to blindly lift the first
n-many components to the type level but instead to expose the induced dependency subgraph
of a given set of components. PackageFormer already does this for the keeping combinator and
the same code could be altered for the waist combinator. At first, it would seem that a similar
idea would work for the in-language library, however this is not the case. The Context library,
unlike PackageFormer, does not work with flat strings but instead transforms the inner nodes
of abstract syntax trees —such as replacing Πs by λs or Σs— and so the need to lift a subgraph
of a structure’s signature no longer becomes a linear operation that alters inner nodes.

For an example to illuminate the problem, consider the following signature:
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PSGwId2 —‘P’ointed ‘S’emi‘g’roup ‘w’ith ‘Id2’ ≈ Id

record PSGwId2 : Set1 where
field

-- We have a semigroup
C : Set
_⊕_ : C → C → C
assoc : ∀ x y z → (x ⊕ y) ⊕ z ≡ x ⊕ (y ⊕ z)
-- with a selected point
id : C

twice : C → C
twice = λ x → x ⊕ x

-- Such that the point is idempotent
field

id2 : twice id ≡ id

Suppose we want to have the field id2 at the type level, then we must also expose the parts
of the signature that make it well-defined; namely, C, _⊕_, id, twice. At a first pass, id2
only needs id and the operation twice; however, if we look at each of these in-turn we see
that we also need C and _⊕_. As such, in the worst case, this operation is quadratic. Moving
on, as the signature is traversed, we can mark fields to be lifted but we need a combinator to
“shift leftward (upward)” the names that are to be at the type level —in this case, we need
to move id2 and id to come before assoc. This is essentially the algorithm implemented in
PackageFormer’s keeping combinator. However, for Context’s do-notation, this may not be
possible since inner-nodes are no longer replaced, linearly, according to a single toggle. Future
work would be to investigate whether it would be possible and, if so, how to do so in a pragmatic
and usable fashion.

Theoretical Concern ]1: Exceptionality. If an integer m divides an integer n, then divi-
sion n÷m yields an integer witnessing n as a multiple ofm; likewise, if a package p is structurally
(nominally) contained in a package q, then we can form a package, say, q −. p that contains
the extra matter and it is parameterised by an instance of p —e.g., Monoid is contained in
Group and so Group -. Monoid = λ (M : Monoid) → (_−1 : · · · , left-inverse : · · · ,
right-inverse: · · · ) is the parameterised package that can adjoin inverses to monoids. As
such, packages are like numbers —compare with the idea that a list is like a number, the latter
being a list of unit (trivial) information.

Our goal was to determined the feasibility of this idea within dependently-typed settings. The
implementation of the Context in-language library yields a resounding positive. As mentioned
already, limitations of the host DTL’s reflection mechanism are inherited by our approach.

Future work would focus on the precise relationship between features of the host language
and a library treating packages as first-class. Moreover, it would be useful to investigate how
packages can be promoted to first-class after the construction of a language. Such an inves-
tigation would bring to light the interplay of how packages actually influence other parts of a
language —which is sorely lacking from our work.
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Perhaps the most pressing concern would be how the promotion of packages would influence
typechecking. At first, for instance, the package PSGwId2 from above could be typed as Set1
but that would be wildly inappropriate since we cannot apply arbitrary package combinators,
such as _-._, to arbitrary types —just as we cannot apply _÷_ to arbitrary types. Instead, we
would need a dedicated type, say, Package. Things now become exceedingly hairy. Do we need
a hierarchy to avoid paradoxes, as is the case with Setn? A parameterised type is a Π-type,
but a parameterised package is a package —so do Π-types get ‘absorbed’ into Package? What
are the types of the package combinators introduced in this thesis, such as unbundling Π→λ?

These questions are not only interesting by themselves, but they would also be a stepping
stone to having full-fledged first-class packages in dependently-typed languages.

Theoretical Concern ]2: Syntax. The theories-as-data-structures lens presented in this
work showcases how a theory (a record type, signature, admitting instances) can have useful
data-structures (algebraic data types) associated with it. For instance, monoids give rise to
binary trees whose leaf values are drawn from a given carrier (variable) set. One can then
encode a sentence of a model structure using the syntax, perform a syntactic optimisation, then
interpret the sentence using the given instance.

Future work would focus on the treatment of non-function-symbols. For instance, instead
of discarding properties from a theory, one could keep them thereby obtaining ‘higher-order
datatypes’3 or could have them lifted as parameters in a (mechanically generated) subsequent
module. Moreover, the current implementation of Context has a basic predicate determining
what constitutes a function-symbol, it would be interesting to make that a parameter of the
theories-as-data-structures termtype construction.

Proof. Finally, there are essentially no formal theorems proven in this work. The construc-
tions presented rely on typechecking : One can phrase a desired construction and typechecking
determines whether it is meaningful or not. It would be useful to determine the necessary
conditions that guarantee the well-definedness of the constructions —so that we may then “go
up another level” and produce meta-constructions that invoke our current constructions me-
chanically and “wholesale”. More accurately, in Agda, proof-checking is part of type-checking
since all proofs are terms —in particular, the well-formedness of a construction —via either
PackageFormer or Context— is certified at typechecking time.

8.2. Concluding Remarks

In dependently-typed settings (DTS), it is common practice to operate on packages —by renam-
ing them, hiding parts, adding new parts, etc.— and the frameworks presented in this thesis
show that it is indeed possible to treat packages nearly as first-class citizens “after the fact” even

3 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. “Cubical Agda: A dependently typed programming
language with univalence and higher inductive types”. In: Proc. ACM Program. Lang. 3.ICFP (2019),
87:1–87:29. doi: 10.1145/3341691
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when a language does not assign them such a status. The techniques presented show that this
approach is feasible as an in-language library for DTS as well as for any highly customisable
and extensible text editor.

The combinators presented in this thesis were guided not by theoretical concerns on the
algebraic nature of containers but rather on the practical needs of actual users working in DTS.
We legitimately believe that our stance on packages as first-class citizens should —and hopefully
one day would— be an integral part of any DTS. The Context library is a promising approach
to promoting the status of packages, to reducing the gap between different “sub-languages” in
a language, and allowing users to benefit from a streamlined and familiar approach to packages
—as if they were the ‘fancy numbers’ abstracted by rings, fields, and vector spaces.

Finally, even though we personally believe in the import of packages, we do not expect the
same belief to trickle-down to mainstream languages immediately since they usually do not
have sufficiently sophisticated4 type systems to permit the treatment of packages as first-class
citizens, on the same footing as numbers. Nonetheless, we believe that the work in this thesis
is yet another stepping-stone on the road of DRY 5 endeavours.

4 The static typing of some languages, such as C, is so pitiful that is makes type systems seem more like a
burden then anything useful —in C, one often uses void pointers to side-step the type system’s limitations,
thereby essentially going untyped. The dynamically typed languages, however, could be an immediate test-
bed for package combinators —indeed, Lisp, Python, and JavaScript use ‘splicing’ operators to wholesale
include structures in other structures, within the core language.

5 Don’t Repeat Yourself !
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A.1. 265 Line Context Implementation

These are the implementation fragments from Chapter 7, in a self-contained listing.

1 --
2 -- The Next 700 Module Systems ( •‘ ^ •‘)# Musa Al-hassy 〈2021-04-27 Tuesday 18:00:12〉
3 -- This file was mechanically generated from a literate program.
4 -- Namely, my PhD thesis on ‘do-it-yourself module systems for Agda’.
5 --
6 -- https://alhassy.github.io/next-700-module-systems/thesis.pdf
7 --
8 -- There are “[[backward][references]]” to the corresponding expository text.
9 --

10 -- Agda version 2.6.1.2; Standard library version 1.2
11

12 open import Level renaming (_t_ to _]_; suc to `suc; zero to `0)
13 open import Relation.Binary.PropositionalEquality
14 open import Relation.Nullary
15

16 open import Data.Nat
17 open import Data.Fin as Fin using (Fin)
18 open import Data.Maybe hiding (_>>=_)
19

20 open import Data.Bool using (Bool ; true ; false)
21 open import Data.List as List using (List ; [] ; _::_ ; _::r_; sum)
22

23 import Data.Unit as Unit
24

25 -- The map-Args of Reflection is deprecated, and it is advised to use the map-Args
26 -- within Reflection.Argument.
27 open import Reflection hiding (name; Type; map-Arg; map-Args) renaming (_>>=_ to _>>=term_)
28 open import Reflection.Argument using (map-Args) renaming (map to map-Arg)
29

30 `1 = Level.suc `0
31

192
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32 open import Data.Empty using (⊥)
33 open import Data.Sum
34 open import Data.Product
35 open import Function using (_◦_)
36

37 Σ: • : ∀ {a b} (A : Set a) (B : A → Set b) → Set _
38 Σ: • = Σ
39

40 infix -666 Σ: •
41 syntax Σ: • A (λ x → B) = Σ x : A • B
42

43 Π: • : ∀ {a b} (A : Set a) (B : A → Set b) → Set _
44 Π: • A B = (x : A) → B x
45

46 infix -666 Π: •
47 syntax Π: • A (λ x → B) = Π x : A • B
48

49 record 1 {`} : Set ` where
50 constructor tt
51

52 0 = ⊥
53

54 -- [[Single argument application][Single argument application:1]]
55 _app_ : Term → Term → Term
56 (def f args) app arg' = def f (args ::r arg (arg-info visible relevant) arg')
57 (con f args) app arg' = con f (args ::r arg (arg-info visible relevant) arg')
58 {-# CATCHALL #-}
59 tm app arg' = tm
60 -- Single argument application:1 ends here
61

62 -- [[Reify N term encodings as N values][Reify N term encodings as N values:1]]
63 toN : Term → N
64 toN (lit (nat n)) = n
65 {-# CATCHALL #-}
66 toN _ = 0
67 -- Reify N term encodings as N values:1 ends here
68

69 {- Type annotation -}
70 syntax has A a = a : A
71

72 has : ∀ {`} (A : Set `) (a : A) → A
73 has A a = a
74

75 -- From: https://alhassy.github.io/PathCat.html § Imports
76 open import Relation.Binary.PropositionalEquality as ≡ using (_EQUAL_ ; _≡_)
77 module _ {i} {S : Set i} where
78 open import Relation.Binary.Reasoning.Setoid (≡.setoid S) public
79

80 open import Agda.Builtin.String
81

82 defn-chasing : ∀ {i} {A : Set i} (x : A) → String → A → A
83 defn-chasing x reason supposedly-x-again = supposedly-x-again
84

85 syntax defn-chasing x reason xish = x ≡〈 reason 〉' xish
86

87 infixl 3 defn-chasing
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88

89 {- “Contexts” are exposure-indexed types -}
90 Context = λ ` → N → Set `
91

92 {- Every type can be used as a context -}
93 ‘_ : ∀ {`} → Set ` → Context `
94 ‘ S = λ _ → S
95

96 {- The “empty context” is the unit type -}
97 End : ∀ {`} → Context `
98 End {`} = ‘ 1 {`}
99

100 _>>=_ : ∀ {a b}
101 → (Γ : Set a) -- Main difference
102 → (Γ → Context b)
103 → Context (a ] b)
104 (Γ >>= f) zero = Σ γ : Γ • f γ 0
105 (Γ >>= f) (suc n) = Π γ : Γ • f γ n
106

107 Π→λ-type : Term → Term
108 Π→λ-type (pi a (abs x b)) = pi a (abs x (Π→λ-type b))
109 Π→λ-type x = unknown
110

111 Π→λ-helper : Term → Term
112 Π→λ-helper (pi a (abs x b)) = lam visible (abs x (Π→λ-helper b))
113 Π→λ-helper x = x
114

115 macro
116 Π→λ : Term → Term → TC Unit.>
117 Π→λ tm goal = normalise tm
118 >>=term λ tm' → checkType goal (Π→λ-type tm')
119 >>=term λ _ → unify goal (Π→λ-helper tm')
120

121 {- ρ :waist n ≡ Π→λ (ρ n) -}
122 macro
123 _:waist_ : (pkg : Term) (height : Term) (goal : Term) → TC Unit.>
124 _:waist_ pkg n goal = normalise (pkg app n)
125 >>=term λ ρ → checkType goal (Π→λ-type ρ)
126 >>=term λ _ → unify goal (Π→λ-helper ρ)
127

128 -- Expressions of the form “· · · , tt” may now be written “〈 · · · 〉”
129 infixr 5 〈 _〉
130 〈〉 : ∀ {`} → 1 {`}
131 〈〉 = tt
132

133 〈 : ∀ {`} {S : Set `} → S → S
134 〈 s = s
135

136 _〉 : ∀ {`} {S : Set `} → S → S × (1 {`})
137 s 〉 = s , tt
138

139 -- The source of a type, not an arbitrary term.
140 -- E.g., sources (Σ x : τ • body) = Σ x : sourcest τ • sources body
141 sourcest : Term → Term
142

143 {- “Π {a : A} • Ba” 7→ 0 -}
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144 sourcest (pi (arg (arg-info hidden _) A) _) = quoteTerm 0
145

146 {- “Π a : A • Π b : Ba • C a b” 7→ “Σ a : A • Σ b : B a • sourcest (C a b)” -}
147 sourcest (pi (arg a A) (abs “a” (pi (arg b Ba) (abs “b” Cab)))) =
148 def (quote Σ) (vArg A
149 :: vArg (lam visible (abs “a”
150 (def (quote Σ)
151 (vArg Ba
152 :: vArg (lam visible (abs “b” (sourcest Cab)))
153 :: []))))
154 :: [])
155

156 {- “Π a : A • Ba” 7→ “A” provided Ba does not begin with a Π -}
157 sourcest (pi (arg a A) (abs “a” Ba)) = A
158

159 {- All other non function types have an empty source; since X ∼= (1 → X) -}
160 sourcest _ = quoteTerm (1 {`0})
161

162 {-# TERMINATING #-} -- Termination via structural smaller arguments is not clear due to the call
to List.map↪→

163 sourcesterm : Term → Term
164

165 sourcesterm (pi a b) = sourcest (pi a b)
166 {- “Σ x : τ • Bx” 7→ “Σ x : sourcest τ • sources Bx” -}
167 sourcesterm (def (quote Σ) (`1 :: `2 :: τ :: body))
168 = def (quote Σ) (`1 :: `2 :: map-Arg sourcest τ :: List.map (map-Arg sourcesterm) body)
169

170 {- This function introduces 1s, so let's drop any old occurances a la 0. -}
171 sourcesterm (def (quote 1) _) = def (quote 0) []
172

173 -- TODO: Maybe we do not need these cases.
174 sourcesterm (lam v (abs s x)) = lam v (abs s (sourcesterm x))
175 sourcesterm (var x args) = var x (List.map (map-Arg sourcesterm) args)
176 sourcesterm (con c args) = con c (List.map (map-Arg sourcesterm) args)
177 sourcesterm (def f args) = def f (List.map (map-Arg sourcesterm) args)
178 sourcesterm (pat-lam cs args) = pat-lam cs (List.map (map-Arg sourcesterm) args)
179

180 -- sort, lit, meta, unknown
181 sourcesterm t = t
182

183 macro
184 sources : Term → Term → TC Unit.>
185 sources tm goal = normalise tm >>=term λ tm' → unify (sourcesterm tm') goal
186

187 arg-term : ∀ {`} {A : Set `} → (Term → A) → Arg Term → A
188 arg-term f (arg i x) = f x
189

190 {-# TERMINATING #-}
191 lengtht : Term → N
192 lengtht (var x args) = 1 + sum (List.map (arg-term lengtht ) args)
193 lengtht (con c args) = 1 + sum (List.map (arg-term lengtht ) args)
194 lengtht (def f args) = 1 + sum (List.map (arg-term lengtht ) args)
195 lengtht (lam v (abs s x)) = 1 + lengtht x
196 lengtht (pat-lam cs args) = 1 + sum (List.map (arg-term lengtht ) args)
197 lengtht (pi X (abs b Bx)) = 1 + lengtht Bx
198 {-# CATCHALL #-}
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199 -- sort, lit, meta, unknown
200 lengtht t = 0
201 -- The Length of a Term:1 ends here
202

203 -- [[The Length of a Term][The Length of a Term:2]]
204 _ : lengtht (quoteTerm (Σ x : N • x ≡ x)) ≡ 10
205 _ = refl
206

207 --
208 var-dec0 : (fuel : N) → Term → Term
209 var-dec0 zero t = t
210 -- Let's use an “impossible” term.
211 var-dec0 (suc n) (var zero args) = def (quote 0) []
212 var-dec0 (suc n) (var (suc x) args) = var x args
213 var-dec0 (suc n) (con c args) = con c (map-Args (var-dec0 n) args)
214 var-dec0 (suc n) (def f args) = def f (map-Args (var-dec0 n) args)
215 var-dec0 (suc n) (lam v (abs s x)) = lam v (abs s (var-dec0 n x))
216 var-dec0 (suc n) (pat-lam cs args) = pat-lam cs (map-Args (var-dec0 n) args)
217 var-dec0 (suc n) (pi (arg a A) (abs b Ba)) = pi (arg a (var-dec0 n A)) (abs b (var-dec0 n Ba))
218 -- var-dec0 (suc n) (Π[ s : arg i A ] B) = Π[ s : arg i (var-dec0 n A) ] var-dec0 n B
219 {-# CATCHALL #-}
220 -- sort, lit, meta, unknown
221 var-dec0 n t = t
222

223 var-dec : Term → Term
224 var-dec t = var-dec0 (lengtht t) t
225

226 {-# TERMINATING #-}
227 Σ→]0 : Term → Term
228

229 {- “Σ a : A • Ba” 7→ “A ] B” where ‘B’ is ‘Ba’ with no reference to ‘a’ -}
230 Σ→]0 (def (quote Σ) (h1 :: h0 :: arg i A :: arg i1 (lam v (abs s x)) :: []))
231 = def (quote _]_) (h1 :: h0 :: arg i A :: vArg (Σ→]0 (var-dec x)) :: [])
232

233 -- Interpret “End” in do-notation to be an empty, impossible, constructor.
234 -- See the unit tests above ;-)
235 -- For some reason, the inclusion of this caluse obscures structural termination.
236 Σ→]0 (def (quote 1) _) = def (quote 0) []
237

238 -- Walk under λ's and Π's.
239 Σ→]0 (lam v (abs s x)) = lam v (abs s (Σ→]0 x))
240 Σ→]0 (pi A (abs a Ba)) = pi A (abs a (Σ→]0 Ba))
241 Σ→]0 t = t
242

243 macro
244 Σ→] : Term → Term → TC Unit.>
245 Σ→] tm goal = normalise tm >>=term λ tm' → unify (Σ→]0 tm') goal
246

247 {-# NO_POSITIVITY_CHECK #-}
248 data Fix {`} (F : Set ` → Set `) : Set ` where
249 µ : F (Fix F) → Fix F
250

251 macro
252 termtype : Term → Term → TC Unit.>
253 termtype tm goal =
254 normalise tm
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255 >>=term λ tm' → unify goal (def (quote Fix) ((vArg (Σ→]0 (sourcesterm tm'))) ::
[]))↪→

256

257 -- i-th injection: (inj2 ◦ · · · ◦ inj2) ◦ inj1
258 Inj0 : N → Term → Term
259 Inj0 zero c = con (quote inj1) (arg (arg-info visible relevant) c :: [])
260 Inj0 (suc n) c = con (quote inj2) (vArg (Inj0 n c) :: [])
261

262 macro
263 Inj : N → Term → Term → TC Unit.>
264 Inj n t goal = unify goal ((con (quote µ) []) app (Inj0 n t))

A.2. Example uses of Context

These are the examples from Chapter 7, in a self-contained listing.

1 -- Agda version 2.6.1.2
2 -- Standard library version 1.2
3

4 module Context_Examples where
5

6 open import Context
7

8 open import Data.Product
9 open import Level renaming (zero to `0; suc to `suc)

10 open import Relation.Binary.PropositionalEquality hiding ([_])
11 open import Data.Empty
12 open import Relation.Nullary
13 open import Data.Nat
14 open import Function using (id)
15 open import Data.Bool renaming (Bool to B)
16 open import Data.Sum
17

18 open import Data.List
19 import Data.Unit as Unit
20 open import Reflection hiding (name; Type) renaming (_>>=_ to _>>=term_)
21

22 record DynamicSystem0 : Set1 where
23 field
24 State : Set
25 start : State
26 next : State → State
27

28 record DynamicSystem1 (State : Set) : Set where
29 field
30 start : State
31 next : State → State
32

33 record DynamicSystem2 (State : Set) (start : State) : Set where
34 field
35 next : State → State
36
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37 _ : Set1
38 _ = DynamicSystem0
39

40 _ : Π X : Set • Set
41 _ = DynamicSystem1
42

43 _ : Π X : Set • Π x : X • Set
44 _ = DynamicSystem2
45

46 idτ0 : Set1
47 idτ0 = Π X : Set • Π e : X • X
48

49 idτ1 : Π X : Set • Set
50 idτ1 = λ (X : Set) → Π e : X • X
51

52 idτ2 : Π X : Set • Π e : X • Set
53 idτ2 = λ (X : Set) (e : X) → X
54

55 {- Surprisingly, the latter is derivable from the former -}
56 _ : idτ2 ≡ Π→λ idτ0
57 _ = refl
58

59 {- The relationship with idτ1 is clarified later when we get to _:waist_ -}
60

61 DynamicSystem : Context `1
62 DynamicSystem = do State ← Set
63 start ← State
64 next ← (State → State)
65 End {`0}
66

67 N 0 : DynamicSystem 0 {- See the above elaborations -}
68 N 0 = N , 0 , suc , tt
69

70 -- N 1 : DynamicSystem 1
71 -- N 1 = λ State → ??? {- Impossible to complete if “State” is empty! -}
72

73 {- ‘Instantiaing’ State to be N in “DynamicSystem 1” -}
74

75 N 1
′ : let State = N in Σ start : State • Σ s : (State → State) • 1 {`0}

76 N 1
′ = 0 , suc , tt

77

78 _ = Π→λ (DynamicSystem 2)
79 ≡〈 "Definition of DynamicSystem at exposure level 2" 〉'
80 Π→λ (Π X : Set • Π s : X • Σ n : (X → X) • 1 {`0})
81 ≡〈 "Definition of Π→λ; replace a ‘Π’ by a ‘λ’" 〉'
82 (λ (X : Set) → Π→λ (Π s : X • Σ n : (X → X) • 1 {`0}))
83 ≡〈 "Definition of Π→λ; replace a ‘Π’ by a ‘λ’" 〉'
84 (λ (X : Set) → λ (s : X) → Π→λ (Σ n : (X → X) • 1 {`0}))
85 ≡〈 "Next symbol is not a ‘Π’, so Π→λ stops" 〉'
86 λ (X : Set) → λ (s : X) → Σ n : (X → X) • 1 {`0}
87

88 N 0 : DynamicSystem :waist 0
89 N 0 = 〈 N , 0 , suc 〉
90

91 N 1 : (DynamicSystem :waist 1) N
92 N 1 = 〈 0 , suc 〉
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93

94 N 2 : (DynamicSystem :waist 2) N 0
95 N 2 = 〈 suc 〉
96

97 N 3 : (DynamicSystem :waist 3) N 0 suc
98 N 3 = 〈〉
99

100 Monoid : ∀ ` → Context (`suc `)
101 Monoid ` = do Carrier ← Set `
102 _⊕_ ← (Carrier → Carrier → Carrier)
103 Id ← Carrier
104 leftId ← ∀ {x : Carrier} → x ⊕ Id ≡ x
105 rightId ← ∀ {x : Carrier} → Id ⊕ x ≡ x
106 assoc ← ∀ {x y z} → (x ⊕ y) ⊕ z ≡ x ⊕ (y ⊕ z)
107 End {`}
108

109 D1 = DynamicSystem 0
110

111 1-records : D1 ≡ (Σ X : Set • Σ z : X • Σ s : (X → X) • 1 {`0})
112 1-records = refl
113

114 D2 = DynamicSystem :waist 1
115

116 2-funcs : D2 ≡ (λ (X : Set) → Σ z : X • Σ s : (X → X) • 1 {`0})
117 2-funcs = refl
118

119 _ : sources (B → N) ≡ B
120 _ = refl
121

122 _ : sources (Σ f : (N → B) • Set) ≡ (Σ x : N • Set)
123 _ = refl
124

125 _ : sources (Σ f : (N → Set → B → N) • 1 ≡ 1) ≡ (Σ x : (N × Set × B) • 1 ≡ 1)
126 _ = refl
127

128 _ : ∀ {`} → sources (1 {`}) ≡ 0
129 _ = refl
130

131 _ = (sources (∀ {x : N} → N)) ≡ 0
132 _ = refl {`1} {Set} {0}
133

134 D3 = sources D2
135

136 3-sources : D3 ≡ λ (X : Set) → Σ z : 1 • Σ s : X • 0
137 3-sources = refl
138

139 _ : Σ→] (Π S : Set • (S → S)) ≡ (Π S : Set • (S → S))
140 _ = refl
141

142 _ : Σ→] (Π S : Set • Σ n : S • S) ≡ (Π S : Set • S ] S)
143 _ = refl
144

145 _ : Σ→] (λ (S : Set) → Σ n : S • S) ≡ λ S → S ] S
146 _ = refl
147

148 _ : Σ→] (Π S : Set • Σ s : S • Σ n : (S → S) • 1 {`0}) ≡ (Π S : Set • S ] (S → S) ] 0)
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149 _ = refl
150

151 _ : Σ→] (λ (S : Set) → Σ s : S • Σ n : (S → S) • 1 {`0}) ≡ λ S → S ] (S → S) ] 0
152 _ = refl
153

154 D4 = Σ→] D3
155

156 4-unions : D4 ≡ λ X → 1 ] X ] 0
157 4-unions = refl
158

159 module free-dynamical-system where
160

161 D = termtype (DynamicSystem :waist 1)
162

163 -- Pattern synonyms for more compact presentation
164 pattern startD = µ (inj1 tt) -- : D
165 pattern nextD e = µ (inj2 (inj1 e)) -- : D → D
166

167 to : D → N
168 to startD = 0
169 to (nextD x) = suc (to x)
170

171 from : N → D
172 from zero = startD
173 from (suc n) = nextD (from n)
174

175 module termtype[Monoid]∼=TreeSkeleton where
176

177 M : Set
178 M = termtype (Monoid `0 :waist 1)
179

180 that-is : M ≡ Fix (λ X → X × X × 1 -- _⊕_, branch
181 ] 1 -- Id, nil leaf
182 ] 0 -- invariant leftId
183 ] 0 -- invariant rightId
184 ] 0 -- invariant assoc
185 ] 0) -- the “End {`}”
186 that-is = refl
187

188 -- Pattern synonyms for more compact presentation
189 pattern emptyM = µ (inj2 (inj1 tt)) -- : M
190 pattern branchM l r = µ (inj1 (l , r , tt)) -- : M → M → M
191 pattern absurdM a = µ (inj2 (inj2 (inj2 (inj2 a)))) -- absurd 0-values
192

193 data TreeSkeleton : Set where
194 empty : TreeSkeleton
195 branch : TreeSkeleton → TreeSkeleton → TreeSkeleton
196

197 to : M → TreeSkeleton
198 to emptyM = empty
199 to (branchM l r) = branch (to l) (to r)
200 to (absurdM (inj1 ()))
201 to (absurdM (inj2 ()))
202

203 from : TreeSkeleton → M
204 from empty = emptyM
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205 from (branch l r) = branchM (from l) (from r)
206

207 from◦to : ∀ m → from (to m) ≡ m
208 from◦to emptyM = refl
209 from◦to (branchM l r) = cong2 branchM (from◦to l) (from◦to r)
210 from◦to (absurdM (inj1 ()))
211 from◦to (absurdM (inj2 ()))
212

213 to◦from : ∀ t → to (from t) ≡ t
214 to◦from empty = refl
215 to◦from (branch l r) = cong2 branch (to◦from l) (to◦from r)
216

217 module termtype[Collection]∼=List where
218

219 Collection : ∀ ` → Context (`suc `)
220 Collection ` = do Elem ← Set `
221 Carrier ← Set `
222 insert ← (Elem → Carrier → Carrier)
223 ∅ ← Carrier
224 End {`}
225

226 C : Set → Set
227 C Elem = termtype ((Collection `0 :waist 2) Elem)
228

229 pattern _::_ x xs = µ (inj1 (x , xs , tt))
230 pattern ∅ = µ (inj2 (inj1 tt))
231

232 to : ∀ {E} → C E → List E
233 to (e :: es) = e :: to es
234 to ∅ = []
235

236 from : ∀ {E} → List E → C E
237 from [] = ∅
238 from (x :: xs) = x :: from xs
239

240 to◦from : ∀ {E} (xs : List E) → to (from xs) ≡ xs
241 to◦from [] = refl
242 to◦from (x :: xs) = cong (x ::_) (to◦from xs)
243

244 from◦to : ∀ {E} (e : C E) → from (to e) ≡ e
245 from◦to (e :: es) = cong (e ::_) (from◦to es)
246 from◦to ∅ = refl
247

248 -- 0: The useful structure
249 Action : Context `1
250 Action = do Value ← Set
251 Program ← Set
252 run ← (Program → Value → Value)
253 End {`0}
254

255 -- 1: Its termtype and syntactic sugar
256 Action : Set → Set
257 Action X = termtype ((Action :waist 2) X)
258

259 pattern _·_ head tail = µ (inj1 (tail , head , tt))
260

APPENDIX A. CODE



A.2. EXAMPLE USES OF CONTEXT 202

261 -- 2: Notice that it's just streams
262 record Stream (X : Set) : Set where
263 coinductive {- Streams are characterised extensionally -}
264 field
265 hd : X
266 tl : Stream X
267

268 open Stream
269

270 -- Here's one direction
271 view : ∀ {I} → Action I → Stream I
272 hd (view (t · h)) = t
273 tl (view (t · h)) = view h
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Glossary

Context A sequence of “variable : type [:= definition]” declarations; a dictionarry associating
variables to types and, optionally, a definition; c.f., record-type and object-oriented class;
see ‘JSON Object’. 93

Dependent Function A function whose result type depends on the value of the argument. 41

Module Systems Module systems parameterise programs, proofs, and tactics over structures.
They come in many flavours that each communicate a utility difference; e.g., tuples for
quickly returning multiple values from a function, a record to treate pieces as a coherent
whole, a function as an indexed value, and paramterised modules which ‘build upon’ other
coherent units. 97
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